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PREFACE

This work attempts a complete exposition of the modified Hansen’s theory
developed by Dr. Peter Musen for analysis of the motion of an artificial satellite
in the earth’s gravitational field. However, any exposition which lays claim
to being complete is subject to severe criticism, for the sheer mass of details
that are involved can never be completely covered in a work of practical
proportions. Nonetheless, it is the attempt of the author to provide a sys-
tematic presentation which will begin at a relatively fundamental stage of
celestial mechanics. It is hoped that in this manner, the exposition may be of
value to those new to the field of orbit computation and to those whose concern
is primarily machine programming, as well as to those more interested in this
particular theory of general perturbations.

ody of this work was presented by the author in-a series of lectures at
the Goddard Space Flight Center of the National Aeronautics and Space
Administration in October, 1960. The questions and discussions which arose
in the course of this lecture series were of value in determining what were the
particularly troublesome concepts and techniques in the theory, and an attempt
is made to deal with them thoroughly in this work.

The raison d’etre of this exposition is the recently generated high degree
of interest in artificial satellite orbit computation, and in the Hansen approach
in particular. The theory has been in use in the computation of satellite
orbits since Vanguard I (1958 8) went into orbit in March, 1958, and is the
basis of orbit predictions of the Goddard Space Flight Center. Despite the
important role the theory has played to date, its working is not widely under-
stood, and it is hoped that this exposition will lead to a greater understanding
and use of the theory.

The author, at the request of the Data Systems Division of the Goddard
Space Flight Center, undertook a study of Musen’s development in order that
an exposition of this type, beginning at a fairly basic level, might be made
available to the growing number of those involved in satellite orbit computation.

It is with the deepest gratitude that the author acknowledges the invalu-
able assistance and guidance offered him by Dr. Peter Musen, who gave freely
and amiably of his time, in order to make clear the more subtle points of the
theory. As well, the author wishes to extend his deepest thanks to Mr. David
Fisher of the Goddard Space Flight Center, at whose suggestion this work was
undertaken, and whose direction, assistance, and moral support were instru-
mental in achieving a finished product. In addition, grateful acknowledgment
is given to Dr. Alan Galbraith and Mr. Lloyd Carpenter for carefully reviewing
the manuscript and rendering valuable suggestions.
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COMPUTATION OF SATELLITE ORBITS BY THE HANSEN METHOD AS
MODIFIED BY MUSEN

by

Howarp T. PHELAN
Goddard Space Flight Center

SUMMARY s 37

A comprehensive description of the Hansen theory
of satellite orbit caleulation, as modified by Musen,
1is presented. The equations of the theory are devel-
oped in sufficient detail to allow the reader to relaie
them to fundamenial laws of celestial mechanics.
The physical and mathematical concepts underlying
Hansen’s coordinate system and auxiliary ellipse
are treated. The disturbing potential function and
tts derivatives are developed in the derivation of
equations for the perturbations in the orbit plane, as
well as the perturbations of the orbit plane. The
method is described for determination of the final
position and velocity vectors of the real satellile and
determination of the osculating elements. Finally,
a brief evaluation of the theory is presented. Auxdor

INTRODUCTION

This exposition presents a complete development
of all the mathematical relationships used in
Musen’s theory of the motion of an artificial
satellite in the gravitational field of the earth, a
theory which is basically an application of Hansen’s
Iunar theory to an artificial satellite. Since
Musen’s development is based upon Hansen’s
classical work, an understanding of the latter is
most important in comprehending Musen’s work.
However, Hansen’s theory does not at all lend
itself to an easy, clear, and simple exposition;
quite the contrary is true.

For the past 130 years, Hansen’s theory has led
to confusion and controversy in the world of
celestial mechanics, and for the most part it has
been avoided. The difficulty in understanding
Hansen arises, as Krnest W. Brown (Reference 1)
expressed it, “‘partly on account of the somewhat
uncouth form in which it is givenin the Fundamenta
and partly on account of the very unusual way

in which the perturbations are expressed.” In
other words, Hansen’s techniques in solving lunar
perturbations were extremely unorthodox, enough
so that many of his contemporaries and successors
violently disagreed with him. Nonetheless, the
undeniable fact about Hansen’s lunar theory was
that it worked, and with a high degree of accuracy.
Here, it is necessary to inspect what are basigally
Hansen’s methods if we are to understand Musen’s
final result. Though it is iimpossible in a work of
this length to cover all the details of Hansen’s
theory, it is hoped that by dealing with only the
techniques incorporated in Musen’s development,
we will have a sufficiently clear and complete
perspective on the theory as adapted to the
motion of artificial satellites.

In general, Hansen’s Iunar theory had six

distinguishing features:

1. A fictitious, or auxiliary, ellipse is introduced
and placed in the plane of the instantaneous
orbit, i.e., the plane containing the instan-
taneous radius and velocity vectors. This
fictitious ellipse is of constant shape, and its
perigee moves in a specific manner.

2. The angular perturbations in the plane of
the orbit are added to the mean anomaly of
the fictitious ellipse.

3. The radial perturbations are expressed as a
ratio between the radial distance of the real
satellite and that of the fictitious satellite.

4. The longitudes are measured from a ‘“Depar-
ture Point’’ in the plane of the orbit.

5. One function, W, is found which expresses
all the perturbations in the orbit plane.

6. The theory is a general one which handles
lunar perturbations of all kinds.

Each of these six features is to be found in the

Musen development. Only four changes are made
1
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by Musen in his development, but each is ingenious
and very significant. They are as follows:

1. Musen has used the eccentric anomaly of
the fictitious satellite as the independent
variable instead of time. He has developed
all his Fourier series expressions in terms of it,
whereas Hansen’s Fourier series were de-
veloped in terms of mean anomaly. The
idea of using the eccentric anomaly was
borrowed from Hansen’s planetary theory.

2. The method of iteration is used in developing
the final series forms, replacing Hansen’s
method of development into Maclaurin
series. This change was made desirable by
the existence of fast computing machines
which handle iterations rapidly.

3. Parameters designated by the symbol X are
introduced. These parameters, which deter-
mine the perturbations of the orbit plane,
allow the introduction of a rotation matrix,
an ingenious development leading directly
and simply to the final position vector.

4. The rotation matrix is introduced in place of
Hansen’s development in polar coordinates,
obviating much of the cumbersome calcula-
tion required by Hansen.

So in the final form of Musen’s development,
the basic idea consists of introduction of a fictitious
auxiliary satellite which describes an auxiliary
rotating ellipse of constant shape and moves in this
ellipse in accordance with Kepler’s laws. The
position of the real satellite is determined by its
deviations in time, as well as in space, from the
position of this auxiliary satellite. The perturba-
tions in the orbit plane are relatively large com-
pared to those of the orbit plane, and are separated
from the latter. They are then determined by
the single function W for which a differential
equation of the first order is formed. The per-
turbations of the orbit plane are determined by
four interdependent parameters, the A parameters.

It should be noted here that the sixth dis-
tinguishing feature of Hansen’s method, given
above, has significance in the artificial satellite
theory. Hansen’s method allows inclusion of all
perturbing forces on the moon. Clearly, the
forces which disturb the motion of artificial
satellites can be more numerous and more complex
than those which disturb the motion of the moon.
Nonetheless, Musen’s modified Hansen theory

allows easy inclusion of such forces as those due
to the gravitational attraction of the sun and the
moon, solar radiation pressure, the ellipticity of
the earth’s equator, and the motion of the earth’s
water masses. It is not inconceivable that even
the force of atmospheric drag can be included in
the theory. However, this effect, which is the
most troublesome and difficult force to deal with
In artificial satellite theories, is not yet sufficiently
understood to allow its easy inclusion in the
disturbing function.

The theory as developed by Musen is of unique
and primary significance because it is exact for all
orders of perturbations. This renders it most
valuable for the accurate determination of long
period effects, and allows long term predictions.
However, it should be noted that for low altitude
satellites (on which the drag effects are con-
siderably larger than other perturbing effects)
the theory gives, for practical purposes, orbit
predictions good for approximately two weeks’
time.

Musen has recently completed a modification of
his development (Reference 2) which circumvents
some of its more troublesome aspects. However,
the basic approach is exactly that which is de-
scribed here. The major difference is that the
perturbations are developed by using the true
longitude rather than the eccentric anomaly as
the independent variable. The new technique
avoids the necessity of ‘‘starring” and “barring”
the potential function in the development of the
basic perturbation function W. It also allows
polynomial representation in most places where
the present development uses infinite series.
Much of the problem of machine trunecation error
is thus eliminated. The new modification is
also limited to only those eccentricities for which
Kepler’s equation can be readily solved. Until
some replacement of Kepler’s equation is found for
large eccentricities, this limitation will exist.
The techniques used in the new modification for
developing the perturbations and finding the
constants of integration are exactly those described
here, and the machine program is roughly equiva-
lent to the existing one.

The notation in the following exposition is,
where possible, the same as that used in Brown’s
discussion of Hansen’s Lunar Theory (Reference
1), which was based upon Hansen’s notation in the
Darlegung (Reference 3).
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SECTION I

BASIC NOTATION AND FUNDAMENTAL EQUATIONS OF CLASSICAL
CELESTIAL MECHANICS

DISCUSSION

Before an attempt is made to dissect the Musen
theory, it is necessary to become familiar with the
basic expressions which occur in it, as well as the
notation used. This section lists the notation used
and then gives the derivations of five equations
common in classical celestial mechanics, which are
used in the Musen development. Two of these
equations apply only in an ‘‘ideal’” coordinate sys-
tem (defined as a coordinate system which rotates,
but so that the form of the equations of motion
of a satellite is invariant). This is a very impor-
tant consequence, and one upon which Hansen
relies. Hansen’s particular ‘‘ideal” rotating coor-
dinate system is an orthogonal one in which the
X and Y axes are allowed no rotation about the Z
axis (see Figure 1 which is explained in greater
detail in Section ITI).

The basic ellipse equations found in this section
are derived in Appendix A, as are the equations
of motion in polar form. We start our develop-
ment with the classical two-body problem, and
since much of Musen’s development is a vectorial
one, let us begin here by listing all the vectors
and angles which will occur. We assume an or-
thogonal, xyz, inertial coordinate system whose
origin is at the center of the earth, which in the
first approximation we will assume to be spherical
and homogeneous. The zy plane is the earth’s
equatorial plane, and the z axis has the positive
direction of the axis of rotation. In the absence of
disturbing forces, a satellite of negligible mass has
as its equation of motion

F=— &
where
r=zi+yj-+zk
is the position vector of the satellite, r is its magni-
tude, and i, j, k are unit vectors along the z, ¥, 2
axes respectively. The velocity vector is

. dx, dy. dz
=g i tg itk
and the acceleration vector is

dx., doy., d*z

In this system of equations, the equations of
motion have been nondimensionalized by choos-
ing as a unit of length the earth’s mean equatorial

Tadius, and as the unit of time the square root of

the ratio of the radius to the Newtonian accelera-~
tion at a distance of one radius from a point mass
(having the earth’s mass). (See Section X.)

The satellite’s orbit is assumed to be an ellipse.
The following notation will be used, and is identi-
cal to the notation used throughout Musen’s de-
velopment:

E,=a=semimajor axis of ellipse,

E;=¢=eccentricity,

E,=w=argument of perigee as meas-
ured from the ascending
node,

E,=#6=longitude of the ascending
node in the equatorial sys-
tem,

E;=1=inclination of the orbit plane
to the equatorial plane,

Ey=g,=mean anomaly at the epoch
(i.e., at time t=t,),
n=+pa~3?*=mean motion (in Vanguard
units, where standard
p=1),
g=go+n(t—t;) =mean anomaly,
E=eccentric anomaly,
f=true anomaly,
P=P,i}+P,j+Pk=unit vector directed from
origin to perigee,
R=R.i+R,j--R.k=unit vector normal to orbit
plane,
Q=RXP
r’=unit vector in direction of r,
n’=unit vector normal to T,
lying in the orbit plane.

In the two-body problem, the elements
E(i=1,2,...,6) are the constants of integration,
and the complete solution is given by the following
set of classical equations (Reference 4, p. 164):

E—e¢sin E=g, (2)

r cos f=a(cos E—e), (3)

r sinfztz\/l—e2 sin F, (4)
r=a(l—e cos E)= o1—e) (5)

ﬁe cosf.
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X, v, 2 ) 3 sets of
X, Y, Z ; orthogonal

m, n, 7.} axes.

Reference plane  xy
Osculating plane XY

P (perigee)

Departure
Point

angle xm

angle Xm

angle between planes
angle OPr

angle mOP

angle Xr

([T

<« 8 Q>

I

F1eure 1.—The coordinate systems of Hansen’s theory.
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Equation 2 is Kepler’s classical equation relating
the eccentric anomaly to the mean anomaly.
Equations 3, 4, and 5 are the standard ellipse
equations and are derived in Appendix A. The
final equations necessary to the complete solution
are those of the rotation matrix and the position
and velocity vectors:

P, Q. R cosf —sind O
P, @, R,|=[sind cosé 0
P, 0. R, 0 0 1
1 0 0 cosw —sinw 0
X0 cosi —sinz sinw €os w 0 |,(6)
0 sins cOS 1 0 0 1

r=Pa(cos E—e)+Qa+y1—¢? sin F, (7)

b= (Quvi—¢ cos E—Pasin ) (8)
rva
The first and third matrices on the right-hand side
of Equation 6 each describes a rotation about the
z axis. The second matrix describes a rotation
about the x axis.

In the two-body problem, the components of the
position and velocity vectors at the initial time
t=to can be taken as the constants of integration,
and the elements can be determined from them by
means of the above set of equations. The two-
body problem, however, yields only a first ap-
proximation to the motion of a planet or a satellite.
The presence of some disturbing force F causes
deviations {rom the simple motion of the two-
body problem, and gives rise to variations in the
elements of the orbit. Thus, we must find a way
to deal with these variations. The classical con-
cept of osculating elements was introduced as a
device to facilitate the handling of this variation.
The osculating, or instantaneous, elements of the
orbit are the elements which would be found at any
given instant if at that instant the planet or
satellite were assumed to be traveling in a perfect
ellipse and in a stationary plane.

In mathematical terins, the osculating ele-
ments are defined in such a way that if the position
and velocity vectors of the orbiting body are
given as functions of the six elements and tine,

t:j‘(El, Eg, o vy EG; t) ,
l":g(El, EQ, ey E67 t)

673-619—64——2

(9)
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then the following relations must hold:

S dE; or
270 0B, (10)
and
S dE, or
2 a orF (11)
where

is called “Brown’s operator.” (See Reference 4,
pp. 374-375.) 'This is a result of the Method of
Variation of Parameters, a mathematical tech-
nique commonly used in celestial mechanics; it is
not a result of deductive reasoning, but rather an
educated guess as to the form of the general solu-
tion to the problem. (See Reference 5, pp.
466-473.) Two consequences of defining the
osculating elements in this fashion are

o}

or or —r
ot

=F and PV (12)

relations which appear throughout the develop-
ment of certain derivatives of the elements.

Now that we have introduced a disturbing
force F which produces variations in the elements,
we must try to form expressions for these varia-
tions. To do this it is most convenient to work
with the disturbing potential @ rather than its
gradient, the force. We assume that F has the

form
o0

> k, (13)

F=grad ngg i—%—%g j+
which is a convenient form for the development
that follows.

In Musen’s development, we require expressions
for the time rate of change of the angle of inclina-
tion 7, the time rate of change of the right ascension
of the node 8, and the periodic part of the time
rate of change of the argument of perigee 9. We
want these expressions in terms of components of
the force function. In this development, we will
introduce the XYZ coordinate system where X,
Y, and Z are orthogonal axes, the X axis and ¥
axis lying in the orbit plane, and the Z axis being
normal to it. Our attemnpt is to obtain the expres-
sions in terms of the gradients of the potential
function along the X, Y, or Z axis. By using a
vectorial development, we can readily find the
desired form of these expressions.
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di

DERIVATION OF —5
In the two-body problem, in which we let X
and Y be orthogonal axes in the plane of the orbit,

and Z the axis normal to the orbit, we have

since the force is an inverse square force in the
direction of the unit vector r°, where r'=r/r.
If we operate on Equation 14 by rX, we get

r><i=7%><r

But
r
FX r=0; (15)

80, integrating rXr=0, we have

rxXr=c,

where ¢ is the vector constant of[integration.
But from the sketch

dr

we see that [rXr| is twice the area swept out per
unit time. Also, the direction of (rF) is perpen-
dicular to the plane containing r and dr; so if we
call the unit normal to this plane R, we see that

R
.

where 1/h is twice the area swept out per unit
time; and from Kepler’s law,

1
va(l—e?)’

so we have

r><i~:%=c. (16)

Now, again taking Equation 14 and operating
with RX, we have

RXf=—RX 15 (17)

But we see from Equation 16 that R=h(rXr); so
RX £ =h(rX£) X5

h r
=X

A een)

However, we can write

_dr_dr O dvdr0
—dt dt dt dt’

where dr/dt and rdv/dt are the components of F
along the radius vector and perpendicular to it,
respectively. It is 1mportant here to keep in
mind that the magnitude of r is not equal to that

of dr/dt, but rather
\/ dt) tr >

So, writing I in terms of its components, as above,
we have

H={20—

. dr dv dro
r-r=r- %IO—{—T-T%Ey

which gives

r: l" e @
T dt
because
dro . ' dro
r- Et—_o l:r is perpendicular to W]
and
Therefore,

h (rr—r— (18)

We should again avoid confusion by remember-
ing that in our notation,

the radius vector is r, the velocity vector is I,
and the unit vector along r is r’. Clearly, too,
I is tangent to the path. That is, dr®/d¢ is per-
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pendicular to the radius vector, whereas f is not.
So, we have from Equation 18

r h . h_dr
R><775=—2 rr——r %
g b dr
T rtdt
But we notice that
d d [t
b =g (7)
_hde_h dr
Trdt ot dt
Therefore,
3 dro
and we can write Equation 17 in the form
dro
RX"=—h 5+ T (19)

Integrating Equation 19 and knowing that
f(R><f>:R><t—fR><f,

where R=0 we have
Rt +hAro4-q=0, (20)

where q is a constant of integration.
Now, with Equation 20, known as the Laplacian
integral, we have a closed vector triangle

o
h:r ?(in-)

q

with hro, (RXr), and the constant vector . To
find the direction of q it is convenient to use the
following sketch:

Taking the case where r is in the direetion of P, the
perigee (by definition, the point closest to the
origin), we see the path is perpendicular to the
line OP at the point P.  Since the velocity vector r
is always tangent to the path, in this case I must
be perpendicular to OP, and, therefore, perpen-
dicular to the vector r lying along OP. Then, if
I is perpendicular to r, the vector (RX ) must lie
along r, directed inward toward the origin. So, in
the case where r is along OP, we have both the
(RXr) and hr® vectors lying along the same line.
Therefore, in order for the Laplacian integral to
hold true, q must also lie along the line OP and

we can write it
q=heP,

in all cases, where P is the unit vector along OP.
From this it can be shown that e is the eccentricity
of the ellipse. Now, we know that ¢=1/k (and is
therefore a function of the elements @ and ¢); and

c=cR:}lL R and q="heP.

In applying Brown’s operator,

we know that 8/dt applied to any element is equiva-
lent to the total derivative. So from Equation 16

] ] ,
a C—% (l'>< l’),
which gives

d . .
d(t::(% r)Xr—{—rX%, (21)

but we know from Equations 10 and 11,

8
%l‘—“o
and
é .
% l'—F,
so we have
g—ferF. (22)
Now, AR
de ¢ de
=TGR =R e GlorxE.

Multiplying through by RX and h, we have

h<R><R +h<R>< t>=hR><(r><F); (23)
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but ¢=1/h, and RXR=0, so

RX%It—{=hR><(r><F)

=hR -Fr—i(R-1)F,
and since R-r=0,

dR
RX%—ZL(R -Fr.

However, R-F is simply the projection of the force
on the Z axis, i.e., the component normal to the

plane. Therefore,
o
R. F—a—Z
and
dR o
RX S =h S, (24)

Since R is a unit vector, dR/dt allows only the
rotation of the osculating plane about the r vector,
since r is perpendicular to R by definition. The
instantaneous angular velocity of rotation of the
osculating plane, about r, we shall designate as
¥, a vector clearly in the direction of r. Clearly
then,

dR
'('{_t'_\(/x Ry
and we can write
00
RX (¥ XR)=~h 37 r.

Therefore,
Y
(R-R)}¢—(R-¢)R=h 571

But, R-R=1and R.¢y=0since ¢ is in the direction
of r, so

y—h g—g r. (25)

This gives ¢, the rotation of the orbit plane with
the plane considered to be a rigid body. How-
ever, if we have an ellipse in the osculating plane,
it is allowed another motion, a rotation in the
plane, if we disregard changes in the shape of the
ellipse. If we consider the angle = between the x
axis and the line from origin to perigee, then the
rotation of the ellipse about R normal to the plane
of the ellipse is clearly (d=/dt)R. Therefore, the
total motion of the ellipse is given by the rotation

AERONAUTICS AND SPACE ADMINISTRATION

of the plane in space plus the rotation of the ellipse
in the plane, and is

o0
a_'Z r

Considering Figure 2, we can attach three unit
vectors to the osculating plane: m is the direction
of the node; K is perpendicular to m and to the
reference plane; R is perpendicular to the osculat-
ing plane and to m. Using these three unit vectors,
we can resolve the total rotation of the ellipse into
three motions:

h +%FR.

1. the rotation about m, which is di/dt,
2. the rotation about K, which is d6/dt,
3. the rotation about R, which is dw/dt.

The sum of the three rotation vectors must equal
the total rotational motion of the ellipse:

Q dm dz d6 dw .

Multiplying Equation 26 through by m-, we get

dmr

0Q

di de dw -

But m -m=1, m-K=0, and m.R=0; also, m.r
=|ml[r| cos (f+w)=rcos (v—0). (See Figure 2.)
Therefore, we have a final explicit expression for
the first derivative of the angle of inclination:

i

hr 2‘2 cos (v—o) =57 (28)

DERIVATION OF %

Multiplying Equation 26 through by - (mXR)
we get

o0 dmw

di 8 dw

(29)
But (mX<R) is clearly perpendicular both to R

and to m, so both R. (mXR) and m. (mXR) will
simply equal 0, and we have

20 1o
hazr(me):Z% K. (mXxR). (30)
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Ficure 2.-—Rotation of the ellipse.

Now, K- (mXR)=m - (RxXK). And since R and
K are unit vectors, RXK=— (KXR)=— (sin ¢)m
(see Figure 2), so

oQ de . .
ha—Zr- (mXR)——E sin 4. (31)

To write the triple product r - (mXR) as a scalar
function of 7, », and ¢, we can temporarily insert a

set of orthogonal axes 2/, 3/, 2’ along which lie the
unit vectors i’, j*, and I’ respectively. Placing
these axes so that the unit vector m falls along 2/,
and R falls along 2/, we can write:

r=r cos (z—ao)i’+7 sin (v—a)j’,
m=i’,
R=I".
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Using the standard form of solution of a triple
product, we have

reos (p—o) rsin (p—o) 0
r-(mxR)= 1 0 0
0 0 1

= —rsin (v—0),

and finally,
0Q .
h& [—r sin (v—0)]=—7; sm %
or
Zz sin 1==hr g% sin (v—o). (32)
DERIVATION OF !
We have from Equation 22
de
%—I‘XF.
But ¢=c¢R, so
dc
R+ dt =rxF. (33)
Multiplying Equation 33 through by - R, we get
e R Rt I X R=(rxF)- R=R. (rxF).

But R - R=1and dR/dt - R=0since R is a unit vec-

tor and dR/dt must be perpendicular to it. Thus,
de .
EZ_R -(rxF). (34)
Then, since
CRMCGT TR
we have
P KR (exP). (35)

Now, if we take the Laplacian Integral
R\< +hr"+q 0 (Equation 20)

and apply Brown’s operator to it, we have

& dr .
Rxdt+Rthdt+0dt+ dt+ =0. (36)

But, we know that in an ideal system

8
= R=0,

(37)
because R, a unit vector always normal to the XY
plane, does not depend upon the elements, and
Brown’s operator gives the dependence of a func-
tion upon the osculating elements. We know, also,
that since the XY plane is always the plane of the
orbit, containing both the position and velocity
vectors, there can be no component of the disturb-
ing force normal to the XY plane;if there were, the
orbiting body would move out of the plane. Thus,
if we write the force

B+,
where
20 .,
®=22i+20 7,
with i/, j°, kK’ unit vectors along X, Y, and Z, re-

spectively, we see that F= (F) because 02/0Z does
not appear explicitly in an ideal system. So,
Equation 11 can be written:

6. 8 dr

prRAY dt_(F) (38)

Further, because h and q are functions of the
elements alone, we have

sy_dq - oh_dh

dt—dt "M@ dt (39)

and, as a consequence of Equation 10,
L —0. (40)

Substitution of Equations 37 through 40 into
Equation 36 yields:

R (F)+ro e Mg, (41)

where we have from Equation 35

%=_h2R - (rXF)=—AF - (RXT). (42)

Now, considering the unit vector n® which lies
in the orbit plane and is perpendicular to r, we
know that n’=(RXr?) and that (RXr)=m°
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which we put into Equation 42. Equation 41
thus becomes:

RX (F) —roh2F - n0+%=0. (43)

If we write (F) in terms of its components in
polar form, along the radius and normal to the
radius, where v is the polar angle, we have

oQ 10Q
—_— o _—

F—ﬁ o ™

Putting this into the first term of Equation 43
gives:

o0 10¢ R dq__
> (er0)+r > (RXno)—p r(F-nO)rO—i—(ﬁ——O,
(44)
and since (RXre)=n0 and (RXno) = —re, we write

o 1 0Q dq
E n— ¥ a—l—hzr(F-nO)) r0+cﬁ—-0. (45)

But F=(F), and thus

oQ 1 0Q
(F. no)_g re. no-{—; > no. no
or
10Q
(F- )= %

sinceho-nt=1and ro-no=0. Therefore, Equation
45 becomes

00 193Q .., dq
> no o (1+hz)ro_—dt

or

dq__ 20 1 20
Gi=ox®) v (J41) S o)

In the inertial coordinate system, the rotational
term w X q would have to be added to this expres-
sion,

At this point, we should recall that q is a vector
directed from the origin to the perigee, and is
given by

q=heP,

where P is the unit vector in the direction of the
perigee. From the sketch

where x is the argument of perigee as measured
from the departure point X,, and i’ and j’ are
unit vectors along X and Y, respectively, we see
that

P=i’ cos x+j’ sin x
and

q=rhe(i’ cos x+j’ sin x). 47

Using this last expression for q and the final form
of dq/dt, we could readily derive the classical
equations for d/dt(he cos x) and d/dt(he sin x).
However, these are not used in the Musen devel-
opment.

We now have formed three of the fundamental
equations of celestial mechanics which are used in
Musen’s development. They are:

di o}) A
E:hrBZ cos (v—o),

. .de o .

sin % (ﬁ—hr 57 Sin (v—0), F (48
dq_ oQ 1, ,2)02
dT_(rOXR) or Tro <r+h ov

In addition to these, we will require two relation-
ships which are classical results; however, they
are valid only in the ideal coordinate system such
as the one Hansen devised.

PROOF THAT %(t{:% cos: IN THE IDEAL SYSTEM

It is apparent from Figure | that we can divide
the rotational motion of the orthogonal XYZ
system into the rotation components along three
axes: the z axis normal to the reference plane, the
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Z axis normal to the osculating XY plane, and the
m axis along the line of intersection of the two
planes.

If we examine the motion of the X axis, we see
it has a rotation component about z which is
dé/dt. Similarly it has a rotation component about
Z which is—da/dt, and one about m which is di/dt.
Therefore, if we let 2% Z° and m° be unit vectors
along 2z, Z, and m respectively, we can write the
total rotation velocity of the X axis, w, as

de do di
w—d‘t ZO—E ZO—I—E mo; (49)
but
20 g(z Z? (Zo cos 1+no sin 4),

where n®=Z%X m?®, that is, n® is a unit vector in
the direction of 7, which is normal to m and in
the XY plane. Note that Z is perpendicular to n
and that Z, 2, and » are all in the same plane; thus

we can write
de . do de . . di
w-((ﬁ cos @—(E> ZH—((»E sin > no +— mo.
This gives the rotational velocity of the X axis in
terms of three orthogonal components. Now, the

definition of an ideal system is that the X and ¥

axes have no rotation about the Z axis. There-
fore, we must have
( . do
7 cos z—%—o
or
(50)

(ia (10 I

This conclusion can also be reached geometrically:

z

In our ideal system, we allow rotation of the XY
plane only about the radius vector r, in which
case the plane, in some time dt, will be displaced
to the dotted line. The departure point will be
displaced to X,, and the line between X; and Xu
will be perpendicular to both the XY plane and
the displaced XY plane. Thus, ¢ will be increased
by do, and 6 by df. And we will have the right

triangle
do
do

in which do=(d#6) cos i. Therefore, since i+di—1

as di—0, we see that

It is clearly evident that in a non-ideal system,
this condition cannot hold, for in such a system,
6 could be held constant (see Figure 1) and the X
and Y axes could be rotated about the Z axis.
In this case, df/dt=0, but do/dt 0, so

da de cos i.
dt dt
PROOF THAT IN THE IDEAL SYSTEM r g&; % cos 7

Inasmuch as the disturbing function @ to be
used is composed of the zonal harmonics of the
earth’s gravitational field (see Equation 77), Q is
symmetric with respect to the earth’s axis (7
axis). Thus,

Q=0(, ¢'),

where ¢’ is the geocentric latitude.
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If ¢° is the unit vector normal to r and in the
direction of increasing ¢’, 00/0Z will be given by
the projection of

1 0Q

r ag’ 4
on the Z axis. The other component of gradient
2 is in the direction of r which is perpendicular to
the Z axis and therefore makes no contribution
to 0Q/0Z. Now we can write

Qg—l QQ cos 8
YA ’

where g8 is the angle between q° and the Z axis.
From the spherical triangle determined by Z°,
2, and ¢

0

T ,
¢

zD

ZO

where Z° and ¢° are each perpendicular to r and
the vectors ¢°, z°, and r are coplanar, the angle
B between ¢ and Z° is given by

__€0S %
cos ¢’

cos B

Hence,

00 cosi 0Q,
OZ 1 cos ¢’ 0¢”’

or, if we let Yy=sin ¢, then

dy=cos ¢'d¢’

and

7oy 08 7. (51)

dQ_ 00
oy

SECTION 1II
HANSEN’S COORDINATE SYSTEM AND THE AUXILIARY ELLIPSE

GENERAL OUTLINE OF THE PROCEDURE

In this section, the rotating coordinate system
and the auxiliary ellipse will be introduced and
discussed. At this point it seems advisable to
discuss the entire problem and method of solution
in order that the entire procedure be put into
focus. The purpose of a theory such as Musen’s
is to allow analysis of the effect of forces on an
artificial satellite and, from them, predict the
motion and the behavior of the satellite in orbit.
In this development, only the zonal harmonics
of the ecarth’s gravitational potential are taken
into account, though other forces could be con-
sidered as well. We want to be able to predict
the position of a satellite moving in this gravita-
tional field, once we have established by observa-
tion its position and motion at some initial time
t,. From the initial observations of the satellite,
we are able to deduce an approximation to its
orbit, which will be the auxiliary ellipse, We very
carefully determine this first approxiination so it
will have a specific motion.
carcful determination is essentially one of separat-
ing the secular motions from the periodic motions,
both of which are caused by the disturbing poten-

673-619—64— 3

The process of this

tial of the earth. OQut of this separation process
come two products: (1) a set of equations which
defines exactly in time the position of the fictitious
satellite, and (2) a set of equations which gives
exactly the relationship between the real and
fictitious satellites in time. Using these two
results, we are able to determine the position of
the fictitious satellite at some desired future time,
and then the position of the real satellite at that

time,
THE COORDINATE SYSTEMS

Hansen’s first step was to introduce a rotating
coordinate system. He then defined the motion
of the rotating system in such a way that the
equations of motion were invariant in it, i.e., he
made his rotating syvstem ideal. The coordinate
systems used by Musen are the same as Hansen’s,
80 only one discussion is needed.

In the Musen development, a right-handed in-
ertial orthogonal system xyz is introduced, with
its origin at the center of the earth, its z and y
axes in the earth’s equatorial plane, and its z axis
towards the north pole. Then a second orthogonal
system, the XY Z system, is obtained by rotation
through three Eulerian angles from the xyz system
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(see Figure 3). If the XYZ system is originally
identical to ayz, its first rotation is that of the X
and 1" axes through an angle 8, about the z axis.
Next, the } and Z axes are rotated through an
angle 7o about the X axis. The third rotation is
that of the X and Y axes through an angle —oq
about the Z axis. After these three rotations, the
point where the X axis intersects the celestial
sphere, named by Cayley the departure point, is
the point from which all angles in the X1 plane
are measured (Reference 1, p. 60).

z Y
A

j't:)
/ y
\ /
\ Yo
\
\
/60/\/' 4
g o
/
X
X

Fi1avrEe 3.—Geometry of the departure point.

Now, with the original position of the XY Z sys-
tem defined by the angles 6, 7o, and oo, we impose
such conditions as to render it an ideal system.
The first condition is that the X} plane be always
the instantaneous plane of the satellite’s orbit ; that
is, the XY plane always contains the instantaneous
position vector and velocity vector of the satellite.
The second condition imposed is that after the
original position of the XY Z system is defined by
the angles 6y, s, and g, the angular velocity of the
system, considered as a rigid body, have a com-
ponent of zero along the Z axis. These two con-
ditions define the rotating coordinate system as
ideal, and give rise to the two important relations
developed at the end of Section I. It is helpful
to prove this result.

PROOF THAT THE ROTATING SYSTEM IS IDEAL

The form of the equation of motion which
includes the disturbing force is

——+F.

Operating with r<, we have

r><i‘:—,173 (rXr)+rxF,

or
rXf=rXEF, (52)
since (rxXr)=0. But

d

rXr—(ﬁ r><r—~ (rxr),

where in all cases

rXiz%

(Equation 16) in which 1/4 is twice the area swept
out per unit time. So

d /R 1 (IR
qt (ﬁ dt <h)+h i

and Equation 52 becomes

<h>+2 ‘[[lt{ rF. (53)

Operating with R- gives

R(—%G)H{ R <h> R-(rXF).  (54)

But R-R=1 and R.dR/dt=0 since R is a unit
vector, so Equation 54 beconies

%(%)zR-(rXF).

Now, operating on Equation 53 with RX gives

RxR<Z <h>+R>< <h> RX (rXF),

yielding

(55)

RX@—hRX (r<F).

Expanding the triple cross product, we have
dR

RXZy=hr(R-F)—F(R.n)].
But R-r=0, so
RX%—h r(R.F). (56)
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Operating on Equation 56 with RX and consider-
ing that

R><<R><'[R — R
dt
we have
R
CR—h(R-F)(rxR). (57)

We know dR/dt is perpendicular to R, so (R <X dR/d¢)
is the wvector about which we would rotate
R to get dR/dt. From Equation 56, this vector
is Ar(R-F), and so we see that all rotation of
R is about r, a very informative result. We will
let this rotation vector be w, so

w=h(R-F)r.

Since the limitations imposed on the rotating
coordinate system allow it to have only this rota-
tion around the instantaneous radius vector, w
represents the fofal rotation of the rotating
coordinate system. The differential operator
which takes into account the rotation « of one
system with respect to another is

d
%+w><.

Therelore, the equations of motion in the rotating
system are

i::%+w><r, (58)
and
rZ% rt+wXr
or
(1t2+(1w>< Lo (wx(/r)+ ><(w><l‘)~—— F.

(59)

When it is taken into account that in our case
w=h(R-F)r, the equations of motion in the rotat-
ing system become

. dr
l‘—%, (60)
and since
r “(ﬁ%— XF
=aTent
we have, using Equation 60,
+h(R F)(rXr). (61)

1t2

15

But again using Equation 16, we know that

R
rXr:TL,
S0 we get
F=0 1 (R F)R=—F+F. (62)

If we write F in terms of its components along
the X, Y, and Z axes,

aQ / l Rl ’
F-=3. +DY +aZ k
and let
(B)=5x V+37 "
we can write
——(F)+f k'. (63)

But R(R*F) is just the component of Falong the
Z axis, because R is identical to k’, so

69

R(R-F)=_ (64)
Upon substitution of Equations 63 and 64 into
Equation 62, we have

d°r
(lt2+bZ

3+(F)~1——k’ (65)

However, the motion of this rotating coordinate
system is fixed in such a way that the satellite
always moves in the XY plane, which means that
there is, in effect, no force component normal to
the osculating plane in the XY coordinate system.
This allows us to consider

20,,
o7 K'=0,

and Equation 14 becomes

. dr r
T=3p——"75+(1“)- (66)
Thus, we see that the differential equation of
motion relative to the system rigidly connceted to
the orbit or osculating plane is of exactly the same
form as in the inertial system. Although this
result may at first glance seem trivial or obvious,
it is not to be expected in a rotating coordinate
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system and must be shown. The importance of
the result cannot be minimized for it leads to a
great simplification of the development.

THE AUXILIARY ELLIPSE

We now have two coordinate systems defined,
the inertial system and the XYZ rotating system
in which the orbit plane is always the XY plane.
The standard approach in celestial mechanics is
to introduce, in the plane of the orbit, some first
approximation to the real orbit. This inter-
mediary orbit is determined, and then the devia-
tions of the real orbiting body from it are deter-
mined. Hansen’s method was to introduce an
ellipse of constant shape into the osculating plane
of the real orbit, with aq, es, and no=a,%2 fixed.
A fictitious satellite describes this ellipse as it
moves in accordance with Kepler's Laws. The
ellipse is allowed only one motion in the XY
plane, and that is a rotation about the Z axis,
directly proportional to the eccentric anomaly of
the fictitious satellite. Thus, the argument of
perigee 7 in the XY plane is given by

T:70+yE) (67)

where ¥ is a constant called the secular motion of
the perigee, to be determined in a specific manner.
The directions and lengths of the radii veetors of
the real and fictitious satellites are not identical,
but differ by the order of magnitude of the per-
turbations. (The constants y in Equation 67
and » in Equation 69 have nothing to do with
the inertial coordinates.)

The position vectors of the real and fictitious
satellites are related in space and time. The
introduction of the time dimension was one of the
major causes of controversy among Hansen’s col-
leagues, though it need not be such a great obstacle.
The first relationship is that the unit vector along
the radius of the real satellite, denoted by 1 has
the same direction at time ¢ that the unit radius
vector of the fictitious satellite, denoted by T°, has
at the “pseudotime” z. Thus,

() =1(z). (68)

The second relationship defines the ratio of the
length of the real satellite’s radius vector, at time
t, to the fictitious satellite’s radius vector at
pseudotime z as (14»). In this ratio, » is small
and can be considered a “lengthening’ or “short-

ening”’ factor; r is the radius vector of the real
satellite, and T is the radius vector of the fictitious
satellite. The ratio can be written:

1) =(1+»)F(2). (69)

It becomes necessary, therefore, to know the
relationship between the real time and the pseudo-
time, or “disturbed time,” as well as the factor »,
to determine the position of the real satellite once
the position of the auxiliary satellite is known,
Let the difference in times be defined as 8z,

dz=z—t, (70)

where 8z denotes the perturbation of time. We
can write one further relation between the two
satellites, and that is that the polar angle » of the
real satellite at time ¢ is equal to the polar angle
(f+mo+yAE) of the fictitious satellite at time z.
In this expression, f is the true anomaly of the
fictitious satellite (see Figure 4), AE=E—E,,
where E, is the eccentric anomaly of the fictitious
satellite at the epoch, and =, is the argument of
perigee of the fictitious satellite at the epoch,
Again, y is the “secular motion” of the perigee.
Both polar angles are measured from the X axis:

v=J+m+yAE. (71)

With the true anomaly of the fictitious satellite

given by f and its eccentric anomaly by E, the

motion of the fictitious satellite is governed by the
usual two-body problem equations:

7 cos f=a,(cos E—e,), (72)
7 sin f=ag/1—ee sin E, (73)
T=a,(1—e, cos E), (74

and Kepler’s equation becomes
E—eq sin E=go+no(t—1to) +nodz. (75)
The “area integral” for the fictitious satellite re-
tains its usual form: _
_df 1
2 WS 2
r dz ho, (76)
where
1

he an(i—ed)

(see Appendix A).

From the above set of equations, the motjon of
the fictitious ellipse in the osculating orbit plane
can be uniquely determined. The essence of the
problem, then, is to determine » and éz in order
that the position of the real satellite can be found.
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SECTION III
THE DISTURBING POTENTIAL AND ITS PARTIAL DERIVATIVES

THE POTENTIAL FUNCTION IN TERMS OF THE
GEOCENTRIC LATITUDE

The earth’s disturbing potential function is
defined as the negative of the difference between
the earth’s gravitational potential and the poten-
tial of a perfectly spherical earth of the same mass.
Musen writes this disturbing potential @ explicitly
to the fourth order in zonal harmoniecs, where the
first harmonic is obviated because the origin is
taken at the center of mass, He gives

9:% (1—3¢2)+f% (3¢—5¢3)+% (3—30¢"+35¢%);
(77

where ¢ is the sine of the geocentric latitude, and
(as is shown in Appendix A) is given by

Y=s1n 1 sin (v—a), (78)

and kj, ks, and £, are the geodetic parameters of
the earth.,

As is generally true in classical celestial me-
chanies, it is convenient to develop the perturba-
tion equations in terms of the partial derivatives
of the disturbing function. In Musen’s develop-
ment, these partials should have a very particular
form, that of Fourier series whose terms have
arguments containing the eccentric anomaly F
and the argument of perigee (measured from the
node) w. This form is required by Musen through-
out the development, and makes much cumber-
some algebra necessary, but the end result is that
all perturbation functions can be easily handled.

In order to get ¢ in this desired form, we make
several transformations. The first step is to define
oo and 6,, the angles which designate the original
position of the XY'Z system (see Figure 3), in such
a way that the following two equations do not
contain any constant terms:

2N=g0¢+0—0c—60—2aAE, (79)
9K =0o—0,— 040+ 2nAE, (80)
where AE=FE—F,,.

We will now show that N and K are periodic
only. The quantities 6—oy and 6—8, by defini-
tion contain only periodic and secular terms.

Secular terms are those which are proportional to
time. If the secular terms contained in the sum
of (6—ao) and (§—8,) are denoted by —2cAE,
then NV contains periodic terms only. This defini-
tion of 2aAF determines the constant «. Simi-
larly, by denoting the secular terms contained in
the difference of (¢6—oay) and (6—6,) by 29AE,
the constant 5 is determined and K contains only
periodic terms. The determinations of a, 7, and
one additional determination of y, the secular
motion of the perigee, lead to the development of
x, ¥y, z containing periodic terms only. These
requirements are equivalent to the requirement
that our expression for the “perturbation of time,”
n¢dz, contain periodic terms only.

Rearranging Equations 79 and 80 we can write

c=0o— (a—nAL—(N+K), (81)
§="0o— (a+n)AE—(N—K), (82)

in which the constant, secular, and periodic parts
of ¢ and 6 are clearly separated in that order.
Then taking Equations 71 and 81 into considera-
tion, we have

v—o=f+(ro—00) + (y+a—n)AE+(N+K). (83)

We next define the mean values of these three ele-
ments, denoted by (o), (), and (w), by the follow-
ing equations:

(0) =00— (a—m) AL, (84)
() =8o— (a+n)AE, (85)

and since w=p—o—f (see Figure 4),
(w)=(mo—00) + (y+a—n)AE. (86)

Considering Equations 83 and 86 we can now write
for Equation 78

Y=sin 1 sin [f+ (w)+ N+ K]. (87)

We now introduce four parameters, which we
can see by inspection contain the periodic parts of
the three elements, o, 8, and 7, and also the con-
stant part of 2. The physics of the problem allows
no secular motion of the angle of inclination, so it




COMPUTATION OF SATELLITE ORBITS BY THE HANSEN METHOD AS MODIFIED BY MUSEN 19

1s of no concern to us.
introduced are

The four parameters

N N
-«
M=sin = cos N,

2
1.
A.=sin 5 sin N,
- (88)
)\3—COS sin K,
Ai=cos X cos K,
2 y

and clearly we have the condition that
A12+ )\22‘|_ )\32—|— )\42: 1 . (89)

Now if we expand Equation 87, we have

Y=sin i cos (N+K) sin [f+ (v)]
+sin i sin (N+K) cos [f+(w)]  (90)

which, after further expansion and use of the
relationship ) .

. . )

sin =2 sin 5 ¢OS 5
leads to

Y=2(MA—Aoy) sin [+ (o))

F-2(AAF A N) cos [f4(w)],  (91)

leaving only f and (w) in the argument.

As Musen points out in his original paper
(Reference 6), the advantage of using the four
A parameters is one of symmetry, allowing the
eventual use of the neat rotation matrix. How-
ever, the parameters chosen give rise to trouble
if the satellite has an inclination in the region
around m/2; that is, it is a polar satellite. For this
case the three Hansen parameters p, ¢, and s
which still contain only f and (w) in their argu-
ments are useful. They are defined in terms of
the A parameters (Reference 6) as follows:

:__< cos N h

—= <tau 3) sin V
- 2)cos K’

82&2 tan K.
Ay J

v

(92)

This exposition will not deal with this special case,
but the approach followed is exactly parallel to
that using the four N parameters.

We perform two additional transformations to
arrive at a final form of ¢ in which the arguments
are written in terms of £ and (w). The first of
these is to introduce two functions / and m which
have the forms

1= ; cos [F-H(w)], (93)

mzignﬁ+wn (94)

Considering that
r=ao(1—ey cos E), (Equation 74)

7 cosfzao(cos E—ey), (Equation 72)

T sin f=ae\/1—ee? sin E, (Equation 73)

we can write
1=5 (441=¢) cos [E+(w)]

+% (1—T—¢) cos [E—(w)]l—eo cos (&) (95)
and

=5 (14+T=ed) sin [F+(w)]

—% (1—v1—¢g?) sin [E—(w)]—eo sin (w).  (96)
Substituting Equations 93 and 94 into Equation
91, we have for ¢

=2 (%) (N A—NoAg) m+2 <%°> PV R SYSA
(97)

where m and [ have been expressed in trigono-
metric series whose arguments are in terms of £
and (w). We will next find such a form for a./r
and in the course of the development will show
how the N parameters evolve into Fourier series in
Eand (w).

a
DEVELOPMENT OF ?0 IN SERIES FORM

Brown and Shook (Reference 7, page 70)
deseribe the development of (ao/7)” into a Fourier
series in E, but for our purposes only the first
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power of the expression is needed. First we
define two functions ¢ and g:

¢=sin"! ¢; or eo=sin ¢ (¢, is eccentricity), (98)

and
sin £
© 2
f=tan g=-—-. (99)
cos g
Hence,
_1=p —_2
cos ¢ =1i@ and 60_1—|—62 (100)
Using Equation 100, we know that
a__ 1 . 1442
7 l—eqcos B 1482—28cos E

Writing cos E=(¢F-F¢~ ") /2, where ¢ is the base
of natural logarithms, and rearranging, we have
@ (1+B%)¢i® .
7 (eF—B) (1—Be**)
This can be expressed as the sumn of partial frac-

tions in the usual manner, and for convenience,
since B lies between zero and one, can be written

ag_ 148 1 Bei®
7 1—-8 [I—Be‘iE+l—6eiE]

2
et (148 e+ ) |
=2£11j{f22) I:%JI—B cos E-4-B%cos 2E+ . . :I

But from Equation 100,

€o

g s
1 +\/1'—602

(101)

SO

Qg 2
7

T l—e (%"‘B cos B+ cos 2E+ . . ) (102)

With the ao/7 series written in terms of the
eccentric anomaly E, and with the A parameters
eventually developed in E and (w), it is clear
that ¢ is in the final series form desired. If
placed in the potential function @, and with 1/r
written as

S

0 1
a+»)

11
7 ap

~1

where 1/(1+») is a Fourier series in £ and (w)
alone, the potential function @ and its partial
derivatives could be given as trigonometric series
in E and (w) alone.

SEPARATION OF THE TWOQ ECCENTRIC
ANOMALIES

At this point in the development, we come to
one of the most difficult operations, one which
usually is a major obstacle to a clear understanding
of the theory. The fact is that we have to
distinguish the E entering into the development
of the perturbations from the “elliptic’’ E entering
into equations derived by using £ as a geometric
angle. This distinction is a very subtle and
confusing one, and must be handled very carefully
throughout the development and the computa-
tional process. As Musen points out in his paper
(Reference 6), F has the usual geometrical mean-
ing, when describing the motion of the fictitious
satellite in its ellipse. However, the perturbation
expressions are developed wusing the eccentric
anomaly £ as the independent variable replacing
time. These two types of £ must be distinguished
from each other because the partial derivative
of the potential function 0Q/OF is taken with
respect to the “elliptic” £.

The reason the separation is made will not be
found in the physics of the problem. Rather,
this separation is a mathematical trick to facilitate
the development of one differential equation
which requires only one integration to find the
perturbations in the orbit plane. The expression
W containing the perturbations in the orbit plane
is an explicit expression of the three wvariable
elements, h, ¢, and x, where x is the argument of
the perigee (sometimes denoted by #). However,
the development of the elements in terms of the
potential function provides only the derivatives
of these elements. Therefore, rather than per-
form these integrations to find A, ¢, and x which
are then substituted into W, it is preferable to
form dW/dE which is written explicitly in terms
of the three derivatives. This allows us to find
W by the single integration of its derivative. In
order to perform this process, 7 and 7, both func-
tions of K which appear in the W function, are
considered constant.

The method used to distinguish between the
two types of eccentric anomaly is to temporarily
let the ‘“elliptic’ E be F, and to consider F

I S
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constant. Replacing 7, f, and E by b, é, and F,
respectively, in Equations 72, 73, and 74 we have

7 cos p=ao(cos F—eo), (103)
7 sin ¢=aoy1—eo’ sin F, (104)
p=ay(1—e, cos F). (105)

Furthermore m and /, in the actual computation
of ¢, will be written in terms of # and will be
called m* and [*. The “star” operation means
that £ has been replaced by F'in the proper places.
After the integration to get W, which contains
E and F, the temporary substitution is dropped
and the F’s are replaced by £’s. Throughout the
development, this replacement of F by E is done
by the “bar” operator; thus, f(E)=f(F). The
procedure was introduced by Hansen for the same
reason described here; however, his problem was
to distinguish between the time ¢ entering into
7 and f through z, and the time in the elements.
(See Relerence 8, p. 304 or Reference 1, p. 169.)

FORMATION OF THE PARTIAL DERIVATIVES
OF THE POTENTIAL FUNCTION

So, in order to find the partial derivative of the
potential function which will enter the develop-
ment of the perturbation expression dW/dE, we
take ¢ as given in Equation 97. In the expression
used, called ¢* we will have ao/7, m, and [ re-
placed by ao/p, m*, and [*, respectively. It is
mportant to note that the N parameters do not
contain ¥, but are always expressed in terms of K.
So we could write

yr=2 (%) (MA =N m™+2 (%) (Nohg-FA ) 0%,
(106)

where ao / is a series in F, and m* and [* are
series in /" and (w). After ¥* is placed in the
potential function, one further replacement is
necessary to get the final form @* which will be
used to find the derivatives. Since the 1/
factors in the potential function are found from

the fOI'nl
+ 14 (28 T ’

a/T is replaced by ao/p, and the final form of the
potential function is:
673-619——C4——+

]('2 1 dyp 3 o %9

2= oy (3) (-3
IC3 1 (22 4 9k %3
+a_0?<1+v)4<:> (B=57)

k a *2 *1
b s (%) G—soptanmy; o7)

where y* is given in Equation 106 with

ao

(3+8 cos F+8* cos 2F
P EY 1——60

+8 cos 3F4...), (108)
m¥=11++1—e.2) sin [F+ ()]

—3(1—T=e) sin [F—(w)]— ¢ sin (w),
(109)
P*=3(141—ee) cos [F4+(w)]
+3(1—T—e) cos [F—(w)]—ey cos (o).
(110)

The (1+v) factor in Q% as is true of the )
parameters, is always a series in £ and (w); no
replacement of £ by F is ever made in the series
for ». The form of this series for » will be de-
veloped in later sections. In the development of
dW/dE, the partial derivatives r(0Q/0r) and
0Q/OF are needed. Later on, the derivatives of
the A functions will contain explicitly the partial
derivatives 0Q/dy. The partial derivative 0Q/0F
is obtained by the formal differentiation of Q*
with respect to F and application of the “bar”
operator _

o ou*
SE - oF (111)

The partial r(02/0r) is obtained very simply from
the differentiation of Equation 77, and use of

-5 G- wo
This gives

BB o
4k3<1+v> <a0> (30=5¢")

which is easily seen to be
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r a—Q='—392'—“493—5 94,

> (114)

where @i, @, and Q, are the 1st, 2nd, and 3rd
terms of Equation 77, respectively. This is
identical to

22
rbr

=—30F—4Q%—50%, (115)
where QF, Qf and Qf are the first three terms of
Equation 107, respectively.

The partial derivative 02/0y is obtained again
by the formal differentiation of Q* with respect
to ¥*, and is then “barred’’:

20_ a0*
oy oyt

(116)

where
0¥ 6k, L)" @9)3 *
S (12) (5)
B LN (3% 550
Tag <1+u> (3) (81507

i <i)5 (@)5(—60¢*+140¢*3) (117)
a’ \1+v» p ’
At this point, it should be noted that careful
development of the terms in Q* can result in the
following Fourier series form for Q*:

Q*:ZZ;OZ, i,k COS [%E+2](w)—{-kF]
+§;‘;5"‘_,Si',,k sin [{E+(2j+1)(w)+EF].
(118)

The fact that the coefficients of (w) are in this
form is purely a result of the form in which (w)
enters into m*, I* 1/(1-+), and the N’s. It should
be noted that even though ¢ and @ are starred,
they contain £. This is again a result of the fact
that not all the E’s are replaced by F’s; the \’s
and the 1/(14v) term retain their form in £,
The star really indicates only that /’s are present.

After @* is differentiated with respect to F, and
then operated on by the bar operator to get 0Q/0F,

. the form 1s

SE=32Cn 08 i+ Qi+ D(@)

OF
—{—iZZ_)Si_ jsin [1E+2j(w)].  (119)

The partials 02/0¢ and r(0Q/0r) will have nearly
the same form as 0Q/0F, but the indices of (w)
will differ. (See Section VIIL.)

Now that we have determined the expressions
for the partial derivatives of the potential function,
we are able to begin our development of the W
function, the basic perturbation function which
itself contains all the perturbations of the satellite
motion in the orbit plane.

SECTION 1V
EQUATIONS FOR THE PERTURBATIONS IN THE ORBIT PLANE

Hansen, and correspondingly Musen, have di-
vided the perturbations of the orbiting body’s
motion into the perturbations in the orbit plane,
and those of the orbit plane. In the orbit plane,
the deviations from the two-body path are con-
tained in », the shortening or lengthening factor,
and ndz, the perturbation of the mean anomaly.
The factor » can be thought of as containing the
variation of the elements @ and e, whereas the
angle nedz contains the variations of the argument
of perigee (the periodic variations) and the mean
anomaly of the real satellite. The determination
of both » and nz is done by finding one function,
the W function, which includes the perturbations
of all four elements.

In Musen’s development, the object is to express
the quantity for dW/dE as a Fourier series in E,

(0), and F. Getting an expression of this form
involves a considerable amount of manipulation,
transformation, and algebra; and as a result it is
virtually impossible to relate the developed equa-
tions to the physics of the problem. In addition,
the variable elements themselves are lost in the
transformations, and the final form might appear
meaningless. It should be kept in mind that after
W is originally defined, all efforts are made to find
its derivative in a Fourier series with arguments
containing integral multiples of £, (w), and £
In the process for deriving dW/dE, we will
obtain an expression for dn.dz/dE, which we will
integrate to get a final series form for nz. Also,
in the course of the development, we will produce
a series form for W which isolates the terms con-
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taining sin /' and cos F. 'This series will be used
in the iteration processes to determine ».

One more remark would be helpful here. In
this part of the exposition, we are only developing
expressions, series expressions, for iW/dE, W, and
dnydz[dE. The methods by which these series are
used to calculate perturbations are discussed in
later sections. The purpose of this section is only
to show the origin of the equations. It will be
noticed that the final explicit expressions are in a
form suitable for iteration; that is, the W function
will have W in it. Tt is to be understood that
Wpa=f(W,), where n is the number of the
iteration.

Our first step is to define the W function. We
do this by setting up an expression for the “per-
turbation of time” n,z. We take Equation 71,
which gives the polar angle of the real satellite at
time ¢ equal to that of the fictitious satellite at
pseudotime z, that is,

v=F+m+yAE,

where AE=FE—F, and ¥ is the secular motion of
the perigee of the auxiliary ellipse in the X1 plane.
Differentiating, we have

dv_dfdz_ dE.
& dzat Y@ (120)

But we know from our ‘““area integrals” (see Ap-
pendix A) that

do_1
dt™ hr?
and
af_
dz hor

Substituting into Equation 120 we have
1 dz 1 dE

eV d
or

dz_ h" ) yh_sz (121)

dt

But we know that

r_1.
r 1+vw
by definition, and
hOZJ;—‘___._
va(1—eg?)

(see Appendix A);and, from Kepler’s law,

— —3/2
. . =0y / ’
which gives us

1
7= v 1—eg>.
0

Substituting these into Equation 121, we have

e (b) 1y (FYE
dt (1+V)2 no.\/]__eo Ay dt

(122)

or, since éz=2z—t and

déz_dz 1
dat dt
we have

14+ nm( o) G a2

We see that Equation 123 gives the time deriva-
tive of the “perturbation of time” and is expressed
in terms of two other perturbations he/h and
1/(1+v), as well as the secular motion y of the
perturbed perigee. However, we wish to separate
the higher and lower order perturbations, as a first
step toward developing the expression in a form
suitable for iteration. We can write

d62

1 __(1—|—2v—}-v2)+ 242y 5P
(402 Q4 T2 (142
2
1+1+v (1—{—1})2’

which is put into Equation 123 and gives

diz - ho (h0>(1+u) <h0>(1+v>2

2
( )E (124)
no‘\l'_eo Qo

Now, if we collect the first three terms in a single
function which we call W, we have

w_ o he (e 2
W=-1 h+<h>1+u’

where we can sce that W is of the order of the
perturbations, and

déz h Y *dE
() ot () @
+ (1+1/)2 no—\l—go Qg ([t

(125)

(126)
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But now, since we know that the equation of the
orbit is
_a(l—e?)

“14ecosf (See Appendix A),

where in Musen’s method »= (1+ )7, we can pro-
ceed as follows:

We have shown previously (page 7) that
q=nheP, where P is a unit vector directed from
the origin to the perigee, and we know r is the
vector directed from the origin to the real satellite.
Therefore, the angle between r and P is the true
anomaly f. And, by the definition of the dot
product, we see

=cos f

ﬁl"!

(127)

?[-ﬂ

or
r.q=her cos f.

Now from the equation,
1T —
E:\/a(1—62>,
we see that our equation of the orbit can be written
1.
hr—+her cosfzﬁ
and if we divide this through by (1-+»),

r 1 1
h (1+V>+m (her cOS f)-:hk(l_*_y)

But we have shown in Equation 127 that
her cos f =r - ¢, so

r 1 . 1 i
h (1—+»>+1TV =771

But
ro -
T4 0
and
1 -
1+ (r-q)=r-q,
and thus

- = 1

From Equation 128, we can write

W= —l———}—Qhohr—rQho r-q

—— 1= 2 P g

but since
1
2—- )
o —ao(l—eoz)
we have
T 2hr 2r-q
u +h0a0(1_‘€02)+h0a0(1—'€02) (129)

Now, as has been previously discussed, for the
development of the differential equation for W, it
is preferable to separate the perturbations from
the elliptic motion. Thus, we will replace the £
by F, T by 5, and 7 by ¢, so that we have the basic
ellipse equations written as

7 cos p=a,(cos FF—ey),

7 sin ¢=a,1—eg? sin F,

;:ao(l —eo COSs FV),
and

p=1'p cos (my+é+yAE)+jp sin (ro-+o+yAL).

Making the proper replacements in W', we now
have our first expression for W. To be consistent,
we should call this W*, but neither Hansen nor
Musen has used the W* notation. Thus, we
shall use W here, remembering that W has the
appropriate E’s replaced by F’s, and that T has
all the /s replaced by E’s. We have

ke, % %-q
W= i i—ed Thaa1 =) 130
But since

q=heP=he(i’ cos x+j’ sin x),

where x is the osculating argument of the perigee
as measured from the departure point (see sketch
on page 11), and since

P - q=hep[cos (p+mo+yAE) cos X
+sin (¢+7+yAE) sin x]
=hep[cos (¢p+m+yAE—x)], (131)

we have the classic equation

1-+e cos (d;—i“m)-{—yAE—X) i
(1—e?)

2h o
W= 1__+h0 aol:

(132)




COMPUTATION OF SATELLITE ORBITS BY THE HANSEN METHOD AS MODIFIED BY MUSEN 25

Using Equations 103, 104, and 105, we have for W,
(1—eq cos F)

- +<h0 (1—eg?)
( > (1—eg) [(cos F—e,) cos (my+yAE—x)

—1—eg? sin Fsin (m--yAE—x)].  (133)

Expanding Equation 133 gives

.=[ k0+< )(1—e

< >(1_ 5 ey €08 (mot+yAE— X)]

— (e cos [1ro+yAE—x]—eo):I cos F

HE s
+|: (%e) V1—eg?

which we can write as

sin (my+yAE — x):l sin F,
(134)

W=E-+7Tcos F+¥ sin F (135)
if we let =, T, and ¥ equal the first, second, and
third bracketed terms, respectively. We see here
that =, T, and ¥ are functions of £ and contain
no F’s. Now, if we multiply T through by e,
and add it to =, we will have

E—{—eoT:——l—%—{—i—?- (136)
This is a very important relation, to be used in the
determination of A and Ao, and it should again be
noted that it gives hy/h and hfh, in terms of E and
(w) alone.

But for now let us turn our attention to the
development of the differential equation for W.
We operate on Equation 130 with Brown’s
operator §/dt:

8” oh  &p
dt ~ho 3y dt (h>+h0a0(1——002)|: dt+dt :l

2 op

2 o ., =9q]
T heani—ep) |ai 4P

T (137)

Since h i1s a [unction of the elements alone, and A,
is a function only of the constant elements e, and
€9, We know that

P A
77 he=0,
oh__dh
dt_dt’ ; (138)

and

7))

We also know from the equations of motion in
polar form (see Appendix A), that the component
of the acceleration in the orbital plane perpen-
dicular to the radius vector is

ld
r dt
Written in terms of the disturbing potential (this

component depends on the disturbing potential
alone), this gives

00 _14d (Iv>
o0 rdi\ dt

but we have defined the “area’ as

dvl
dh

¢ (1)
dt\h) o

From Equation 139, another result appears:

so we have

(139)

d (1) Lh_2a
dt \h R2dt™ o
or
dh__;, 0%
——h (140)

Then, we recall that q=heP where P is a unit
vector, and that

éq dq 0 ( 2) oQ

141
Jidt (XR)O+ +h (141)
from Equation 46. Furthermore, we know the
perturbations in p are present only in the vector’s
rotation due to the rotation of the auxiliary ellipse
in the XY plane. This rotation of p around the

Z axis will be given by

(IL

=(RXp)y — (142)

([t
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since y(dE/dt) is the angular velocity of the ellipse
in the XY plane. Clearly, the scalar » is not
affected by the perturbations; that is,

Bo_

Ji (143)

Taking Equations 138 through 142 into con-
sideration, we are able to rewrite Equation 137 as
follows:

% hOOag hoaoa—eg)"( —h- )
+h0—ao(12——2) (RXp) - qy(ff
e o P KB
e 167 T
+%a—ﬁ‘i—%)%§f o (144)

and since Aiao(1—e?)=1 we can write (noting

that sW/dt=dW/dr)
dw_, asz[ 2
dt ® v h'02ao(1;m P
_|_2 rala hip - 10 ]
7 h*ag(1—ey?) h02a0(1—602)
2h, —
+’W2) P (X R) 2 —a*

2 _ dE

+m)‘ (RXp) qy i (145)
or, finally,
25 -1r° 2h? r—
—h p-r ( ) 'y :I
dt ¢ o [ I+ ag(1—eg?)
2q-(RXp)
2hop - (19 e BASLEAY .2
~+2hep- (1" R) +i () (146)

We wish to simplify this expression further. To
find dp/dt, note that 5=pp°. From Equations 103,
104, and 105, we obtain by differentiation and
some algebra

dp .
d—%,=aoeo sin F, (147)
(l¢ _Gov 1_60

Y —_—— 14
TF 5 (148)

From these, and the fact that dp’/d¢=RXp®
(by the definition of the derivative of a unit vector
in a plane), we get

a5 _—dp® dp
dF " dg dF+p dF

=|:(R><F) Q(Lz_eo—]-l—p“aoeo sin F. (149)

Now, differentiating Equation 130

W=-= ho ( ao(l—e()?)

with respect to F, we have

2p-q
hoao(l —éo?)

oW 2% dp 2 dp
aﬁw_hoao(l—eﬁ) dlﬂ h0a0(1_€02) dF q
_ 2haye, sin F 2

h0a0(1_302) hoto(1—eg?) 4
-[(RX;) —;9 v 1—e?+ plage, sin F]- (150)

This last equation for d9W/JF can be rearranged
and written

2q- (RXp)_[oW _
pho(1—eq?) LOF

2ha.e, sin F
hoto( 1—€47)

29 - playe, sin F‘:I 1

hotto(1—e0?)
Multiplied through by » and divided by a,, this
becomes

2q- (RXp)
hotto(1—eo?)

. 3.{2hp+2q-p 1
I:aan cosin F <h000(1—€025)] VI—eg?

This, with the aid of Equation 130, can be written
2q- (RXp)
oo (1—eq?)
_I:E ow
" La, OF
Substituting this into our last equation for dW/d¢
(Equation 146), we have

V,’l_eoz

ho

W’l_eo

2p l‘0 2R\ p 10—
dt +< >@0(1—€02)>
0 Y o OW
+2hop- (0 R) S L = |23

—(W+%9+ 1> o sin F:I (il-t' (151)
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Now taking our original definition of W (Equation
125) we see that

_ho(l +V) +2}l(\_h0(1_v)

W= ThaT) - )

and

}l()_ 1+V 1>
= 1_V> W+1).

Putting this into our last equation for déz/d!
(Equation 126), we have

ol +<1+V> T+ (o

( >2dE
”o\l—eo o

If we multiply through by n, and rearrange, this
beconies

dnedz _ngW(1—v?) +ng?(W+1) tdE
dt 1—? 1——60 <(L0>

or the generalized Hill formula

dnydz W—I—v Y )
i T (ao @ 152

Vi—e dt

Now, differentiating Kepler’s equation
M:E— €y sin E:!/0+n0(t—t0) —f—nOBZ

(Equation 75)
with respect to E we have

1—e, cos E=n, (;Z-I—dm&

But since 7=a,(1—¢, cos E), we have

ﬂ _z_dnoaz'
M IE 4y dE

(153)

Multiplying Equation 152 by dt/dE and using
Equation 153 in the result gives

dnodz_ W+V2> T dngdz\ < )
(ZE o 1—? Qo dE \/1_30 Ay,

which simplifies to

dngbdz I/IJrv? W_—H( )
dE 1+ 1—2 Qg

< > dnoaz 1+W
’\1;60 Qo 1—1/
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Therefore,

dngdz W—}—:ﬂ 1—v 7\?
— ). (154
i i (o)) (@) o

This is close to the final form of the derivative
which we must integrate to find the perturbations
of time. We will discuss its properties later, but
for now we must use it in the further development
of dW/dt. We next substitute it into Equation
153 to get

dt_7 W7\ (1= _y (i>2
"dAE 4 1+W<) (1+W>~/1—e02 o
:1(1~W+V>+<1—V2> y <z>2
ay 14+W 1+W/)V1—ee2 \%

or, finally,
dt  7(1—»?) yr )
1 — ) 155

B g\ Tavi—ea)

This is an important equation which will also be
used 1n the development of the derivatives of the
A parameters.

Now, as a final step, we must express our
derivative in terms of £. We know that

00 _ 00 o7 30 df df
OE 7 oE™ 37 OF’

(156)

where, by differentiation of Equations 72, 73,
and 74,

%:Ml;—_e(f and aa—l’:::aoeo sin E.
And given v=mo+f, we have
2e_og
o  of
Also, since r=(1+»)7,
7 »a—Q—-:? bél
or or
So we can write for Equation 156
g—%=aoeo sin E; %’ %a——/mh?_ eo"
or
02 r 02 ey—sin Er o (157)

W gy 1—eiOE (T—ez = or

Taking Equation 157 and our last equation for
no(dt/dE), Equation 155, we want to substitute
into our equation for dW/dt, Equation 151. First
multiplying through by dt/dE, and using Equation
155, we have
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{hol:a Vi—eg bE

o E B () e | e () )
+{2h°” xR 5 [<n0a0>1+W( \/1—602au>]}

(255 (ies)asinr]
(LUDI‘ W+ +1)esin ¥

SECTION V

FINAL EXPANSION OF —d—E

We now turn to expanding Equation 158 in
terms of the two eccentric anomalies £ and F.
If we let

1—»? ( 7 Y )
= — (14— —==— )
1 +W7 +a’0 '\/]. ““602
S— [” W (W+ +1) ¢ sin F:I

we have

(159)

ﬂ-—h T 4 o2 o0 [2r p-ro T
dE 0 oo DE r aO\/l_eO ao,\/l_eOZ
T 2hT\ p-T0—p
+ iz (i) ian]
agV1—eo? ao(1—eq?)
hor” 4 rog ro0Q[epsin £ 2¢, sin Ep - ro
Nl OF | \/1—e,? N1 —egr

e sin I£ /2R p-T0—p  2p- (r0><R)

—\/ijé? >d0(1—€02) :I
Sy
\1_60

(160)

The process of expanding Equation 160 is a long
and troublesome one. It is desirable for us to
expand it term by term, so we write

i —A’+B’+0/+D'+E'+F'+¢1Sy7
—

(161)
where
A= hor [(2/ ) P10
noao ao\/ 1—eyf

r DQ T ]
Onoao OE L gp/1—ef ’

B’'=h

/1—60
(158)
IN TERMS OF E AND F
O — h F OQ 7 2h2> '
g DE amﬂ:ZO_ het 00(1—602)
D,ZEATD_Q e sin E ,
Nothy OF 1—eg?
,  hr rbSZI:ZF (r"XR) 2¢sinEp. rﬁ:l
BE=——A— — — )
Ny OF r V1—el T
F’—@A@ _ & sin E 2h2> p-1T"—p ]
_noag or v 1‘_602 00(1—60 )

Now, we will deal with A’ alone. Using the

known relationships

r_ 1 )
r—(l—l—v)’
ng=a,"*",
1

hoz—f:.T’

Vao(1—eo?)
p-r'=Dp cos (¢—f) 7(cos ¢ cosf

+sin ¢ smj_),

T=ay(1—e¢, cos E), L (162)
he @
e ——————
YN vy 1'—602
p=ae(l—e, cos I),
T cosfzao(cos E—ey),
7 sinf:ao,/l_eoz sin E,
7 cos p=da,(cos F—e,),
psin gza“/l_e‘g sin F. J

We can write A’ in terms of 2 and F. First we
have

o, 1

A'=A3E (1+v)(1—e02>[ 07)7»7;0] (163)
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The term in brackets in Equation 163 can be 2 77 1
. 1= [COS @—N—1]
written V1—eg? Qo Qo /1 —eg? o
97 3 2F  Tcosfp
r0 2r - = = — CO0S8
[(E)2Z]=(25) 2 cos 61 Wi a0 0
o / Qg
_ _ _ _ 2F psing Tsinf
=27 cos f p cos ¢+27 sin f psin ¢ @ agy1—egt apy1—eq’
Qo @y o o _ 2 z _7_ ?
T2 Y
=2(cos E—e,)(cos F—ep) vi—eg® @ G0 agyl—ey’

/ ‘ / ) Applying Equation 162, and substituting the
+2v1—eo’ sin Eq'1—e? sin ' regult in Equation 166, we get for (:

=cos (E—F)-+-cos (E+F) C'=A aggz}}bf e ! ) (2 cos (E—F)—2
—2¢, o8 F'—2¢4 cos E+2¢.? ‘ —e, cos (2H — F) —egcos F'+2¢, cos E].  (167)
+(1—eg?)[cos (E—F)—cos (E+F)] Next, term D’ of Equation 161 can be written
, 0a?
=(2—ey?) cos (F—E)-e cos (E+F) D'=Ar o (1—e02) [ ¢ sin E]
—2¢y cos F'—2¢, cos K+2¢?; D’'=Ar bgiﬂ =D [(1—e, cos E)e, sink],
and we have 4’ in terms of K and F: and so 0.0
D' =Ar =2 I:eo sin E——sm 2E |.
a2 [ 1 1 o (1 )
r_ L S W S 72, S _ 168
A'=38 5(75) (e (@) cos (F—E) (168)

The next term E’ of Equation 161 becomes, after
+e? cos (E+F)—2¢, cos F'—2¢, cos E+2¢.?].  consideration of Equation 162 and using the fact that
p: (r®}XR)=% sin (f—¢),
168 ° (r°X azz P 2__(]‘ é)
E'=Ar — l: PT_ sin (f—¢)

'“V —e?

Next, we take term B’ which, using Equation

162, we can write _& cos (f_¢) 5 € sin E] (169)
B/— Oaagl = [ 1426, cos E For the bracketed part of this equation, we write

1
[ 1= [2p sin (f ¢)x/1—eo
1 \ _6_02 . (1_‘302) 7'(1+ )
—35 €d co8 2F 2] (165) —25 cos (J—@)eo sin E]

1 Gy 2aq :
Now, €’ can be written T—ed (4 T [(1—es?) sin Ecos F—e,)
—(1—eg?) sin F(cos E—eg)
O'—= A abag? ”: 1 —(eq 5in E) (cos E—ey)(cos F—e,)
o (1—eg?) —eé 8in? E(1—e¢y?) sin F|
[ 7 2r p- !'0—-5:]_ (166) which after rearranging becomes
agVl—eg apyl—e? o 1 ay  2ay, .
=(1__—607) ™ 7{s1n E[(1—eg?)(cos F—ey)
Since p * =7 cos (—f), we can write the brack- —eo(cos F'—eo)(cos E—eo)]

eted term of Equation 166 as —sin F[(1—eg)(cos E—eq)+eo(1—eg?) sin? El}.
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But sin? E=1—cos? E, and ao/r=1/(1—¢, cos E),
so we have

1
(1—302) (1+ )
—sin F(1—ey?) cos E]

2[sin F(cos F—e,)

~ 1_1602) S 2[% sin (F-+F)
+§ sin (E—F)—eysin E
=) gin ()1 i (F—E)]

Thus, Equation 169 for £’ becomes

'—A baoﬂ .
E = l:(l—e D) (1+ )(eo sin (F4+E)

—(2—602) sin (F'—E)—2e¢, sin E)]- (170)

We next determine term F” in terms of E and F:
first we rewrite F’ as
P r°—5>
2%

1—002) [
(171)

Considering the bracketed term, we see that

0, h?
or he(

27 egsin K
ao (1—e?)

I’ =Ar

27 b ey sin K

[ =—22

[cos (3—f)—1]

dy 0/0( - 2>
_ _ZrpesinF (cos ¢ cos f-+sin ¢ sin 7—1)
a() aO (1— )

which, after some algebra, becomes
o sin (F—2F)—e¢, sin F+2e, sin .

Putting this into Equation 171, we have

0ao? h* 1
or he (1—eo*)
[eo sin (F—2E)—e, sin F42¢, sin E]. (172)
We now return to Equation 161 which was

dg—A’+B’+O DB A Y
d ‘\/1_60
If we replace A’, B’, ¢’, D', E’, and F’ by the
values given by Equations 164, 165, 167, 168, 170,
and 172, respectively, we can write our final equa-
tion for dW/dE as follows:
dw da,Q ¢, , Sy
aE =N OF T ez
where A and S are given in Equation 159 as
_[2W_ (. he i
S—l:aO SF <W+h+1> € sin F]y
1—»? T oy
==|14+———==)
1+W Qo /1— e

and M and N are given by

F'=Ar

2

+MA y (173)

2
(1—-602)]\12%2 [2 cos (E—F)—2—e¢, cos (2E—F)
0
—eo €08 F'42¢, cos K|
+—— [(2—e¢?) cos (F—E)

+e¢® cos (E+F)
—2¢9 cos F'—2¢4 cos E+2¢?)

2
—1-+2¢, cos E—% e4? Cos 2E—%’
and

2
(1-—60?)N=£—2 [egsin (FF—2FE)—e¢ysin F+2¢,sin E]
0
+$; ((2—e¢) sin (E—F)—2¢ysin E

2
+eg? sin (E+F)]+ e, sin E-—% sin 2E.

SECTION VI
DERIVATIVES OF » PARAMETERS, EXPRESSIONS FOR %) hﬁ’ AND »
0

THE N DERIVATIVES

In Section V, we arrived at the final form of the
differential equation for dW/dE. We developed
it in a form such that all its components are
trigonometric series with arguments containing
only E, F, and (v). Now we turn our attention
to the much simpler development of similar forms
for the derivatives of the \ parameters. Several
relationships we have found before are required in

this development.
We have previously defined 2NV and 2K as

4 2N=g¢+0p—c—0—2aAF (Equation 79)
an
2K=09—6p—a+6+29AFE, (Equation 80)

and we have developed the expressions

sin ¢ - do =h o

ol 57" sin (v—o0),

(Equation 32)
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g: Z‘: cos 1, (Equation 50)
%:h gg r cos (v—a), (Equation 28)
g—g g—‘? cos 1. {(Equation 51)

Also, we have

T 1= <+ 7_1 .
OdE a 1+W vVi—eg

(Equation 155)

But in Equation 159 we defined

2 =
A== (14 YT,
1+W '\"1_602 Qy
S0 we can write
dt 7
AN 1do l@_adE (175)

dt 20t 2dt “dt
Substituting Equations 32 and 50 into this yields
AN 1de 101 o0 (LE

E= g 080 e h~—— YA rsin (t—o)—a
or
’%’:W ‘(’f h2 2 rsin (1=o)(cot i-+esc i)
JE 1

r sin (v—og) cot iR (176)

S *——h 5

di

We now differentiate our original definition
from Equation 88,

.1
Ai=sin = cos N,

2
and get
dy 1 1 di . dN
Ui =285 77 €08 N—sin = 2 sin NW

from which, using Equations 28 and 176, we get

%z% cos 3 cos N (h 09 r COS (v—a)>
+<51n —E sin NV
-|-<s n ) 3 r cot sin (v—a) sin N

or
(fi);—a)‘z ‘fi?-[-; h 57" cos & 5 €0S N cos (v—o0)

+cos %sin (v—0) sin N], (177)
since A, was originally defined as

sin V.

)\2—s1n

Recasting the second term of Equation 177 we
have

d\_ dE 1

TN TR wh(14) 3 aZ

7 )
l:a—o €os 5 cos N cos (v—o0)
7 1 . .
+a_(; cos 5 sin (v—o) sin N:I-
The bracketed term of Equation 178 can be

written

[ ]:; COS i cos [N—(v—a)].

5 (179)

Since v—a=_7+(w)—|—N—}—K, from Equations 83
and 86, the right-hand side of Equation 179 is

: coS < 2 {cos K cos [ f4(w)]—sin K sin [ f4+(w)]}
:(;:; cos [ f4(w)] cos % cos K
——50 sin [ -} (w)] cos % sin K.

But we know from original definitions in Section
III that
ai cos [+ (w)]=I, (Equation 93)
0

aisin [F+(w)]=m, (Equation 94)

cos % cos K=\,
(Equation 88)

1 .
cos 3 sin K—2;,

so the right-hand side becomes

{(Nd—Nym };
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and we have from Equation 178 that

Do L aah(149) 20 (\l—gm). - (150)
But, since
gg gnﬁ cos ¢  (Equation 51)
and
(%:7% A, (Equation 174)

we can write Equation 180, after multiplying
through by dt/dE, as

d\

JE =al,+ (—l—u) cosz(lM MADA.

But we know

ny=ag %2,
N 1
0——:2,7
Vv ao(1—ey’)
and
r=r(l14v),
so finally we have
(1)\1 25 oQ

(lL = 2—*‘5 h——o\l—e(f O¢ COS 2([)\4 7n)\3)A.

(181)
The derivatives of the other three A parameters

are developed in precisely the same manner as
was d\/dF.  The final forms they assume are:

(1)\2 g Q

2o

({E 1+9 h(}—\ 1_(/ 2 a¢ CcOs '[( Agl >\4m)A

l (182)

(Ag Ay oQ .

1E 7]>\4+2 hoﬁ w cOs ’L()\gl‘{’)\ﬂﬂ)[\,
(183)

TP L A L [ W B )

JE— " Mats hov1—602 cos 1 U-Fxm)A.

(184)

In each of these four derivatives, cos 1 is expressed
as

(610 5] 7::)42_*_)\32_)\22—)\12. (185)

By inspection, we notice that these four expres-
sions are set up in such a way that they allow
iteration. Jach derivative is expressed in terms
of the N’s themselves, and uses the series deter-

mined in the previous iteration for these N\’s.
Also, it is readily seen that every component of
the derivatives can be expressed as a trigonometric
series in £ and (w). No F’s will occur anywhere
in these derivatives. These are the final forms
which are formally integrated to obtain the new
values of the N’s in any iteration.

EXPRESSIONS FOR % }? AND »
0

We have shown previously (Equations 135 and
137) that the W function can be separated as
follows:

W=E+41 cos F+¥ sin F,

where =, T, and ¥ are series containing £ and (w)
alone, and are thus independent of /. And we
have also shown that

E+€0T:_1__+h
0

If we set
%zl—}—A, (186)

we can write

b Aar—m (187)
fig

which gives
Edel=—1—(14A)+2(1—A+A2— A .. ),
or
EbeP=—3A42(AT— AP f AV — . ).

Writing this in a form suitable for iteration we have
]. — 2 3 )
A=—g (Eteo) +3 (W —A A=), (188)

From Equations 136 and 186, it immediately
follows that

h 1, ,
14z EteaT+a). (189)

The series for W determines % and T. Then,
from Equations 186, 188, and 189 the remaining
quantities A, ho/h, and hAfh, are found. This
method of iteration is desirable in that it avoids
the use of further integration to determine these
series. Once the series ho/h and h/h, are found,
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the perturbations of the radius vector » can be
readily found from our original definition of W,

2hy 1

I (Equation 125)

We 1l
We=—1—7+

which, after substitution of ho/Ah=(1-+A) can be
written suitably for iteration as follows:

1 =T =
=5 (a—w )—5 (WA (190)

Again we are avoiding additional integration by

the use of this iteration process. The W series
used in this iteration process is obtained simply

by replacing the F’s by E’s in the series generated
for W.

We now have developed all the necessary
expressions which are used in the theory. In
Equations 173, 154, 181, 182, 183, 184, 186, 189
and 190, we have developed series forms for

AW dngdz d\; dhz dhs dhs he I

— 5 and v,

dE’ dE ' dE dE dE dE b ke

respectively. Our next problem is to add the
constants of integration which are determined in
very specific ways; the method of determination
of these constants has led to much of the contro-
versy and confusion circulating about Hansen’s
theory.

SECTION VII

DETERMINATION OF THE SECULAR MOTIONS y, «, AND 4
AND THE CONSTANTS OF INTEGRATION

DISCUSSION

In Musen’s original paper (Reference 6) he
points out that the “real constants of integration
are the six elements @y, eq, ¢4, 8o, 70, and wo= 19— 07.”’
It is understood that any theory which attempts
to give the motion of an orbiting body in a disturb-
ing force field requires a complete solution of the
differential equations for the time rate of change
of the six elements which define the orbit. The
constants of integration of the set of six differential
equations would clearly be some starting values
of the six elements. In Hansen’s theory, the
differential equations of the elements are disguised
and combined in the differential equations for
W, nedz, and the N’s. Intuitively, therefore, we
would expect the constants of integration of these
new differential equations to be functions of the
elements alone. This is another way of stating
that Hansen’s theory introduces no new constants
of integration, other than the elements.

Musen’s next statement is that these elements
“do not have any simple kinematical or geo-
metrical meaning; in particular, no moment of
time exists for which these elements are osculat-
ing.” The point here is that the “real constants
of integration” are mean values of the osculating
elements, which Hansen assumes to be known ex-
actly. However, in practice, the mean values are
never known as an initial condition.

The standard technique for determining them
is to assume a set of elements at some time ¢,, use

them to predict an orbit, and then to make an orbit
correction assuming that residuals are a result of
inaccurate starting values of the elements. Then
by some correction device, new starting values of
the elements are found and the process is repeated.
In general, the first approximation is the set of
osculating elements determined by observation at
some time ¢;. After several corrections, the values
of the elements should converge to the “mean ele-
ments” which are Musen’s “real constants of in-
tegration.” However, since these elements do not
appear explicitly in the constants of integration of
our development, let us turn to the matter at hand.

At this stage of the exposition, it behooves us
to recall the basic ideas that have governed the
development thus far. After having introduced
an auxiliary ellipse into the osculating orbit plane,
we established that the ellipse moves uniformly in
this XY plane with respect to the eccentric anom-
aly. That is, the perigee moves with an angular
velocity y(dE/dt) in the XY plane. The pertur-
bations of the real satellite’s motion in the orbit
plane are combined in the two perturbations, v
and nedz. The perturbations of the orbit plane,
that is, of the elements 6, ¢, and 1, are contained
in the four interdependent A\ parameters. By the
way in which we introduced and defined the secu-
lar motions ¥, «, and 5, we have established the
following important condition: The four param-
eters i, Az, A3, A, and the two perturbations » and
nedz can contain no secular terms. The secular
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motions « and 7 are defined as containing together
all the secular motions of ¢ and 6, and we know
that 4 phvsically has no secular motion. Also, »
clearly has no secular motion, and the secular
motion of nez is all contained in y.

Since the development uses the iteration process,
the above condition dictates the evaluation of the
various constants of integration. In most cases,
if one of the above six series contained a constant
term, integration of the series would produce a
secular term, which is not allowed. This is the
logic behind the determination of the sccular
motions, and the arbitrary constants of integra-
tion.

DETERMINATION OF y

Now let us examine each integral separately.
The first integration performed is that of dW/dE.
As was explained in Sections IV and V, we finally
were able to develop the differential equation
dW/dE as a trigonometric series whose arguinents
are of the form [iE+j(w)+kF]. From the inte-
gration of this derivative, we will be able to per-
form the important determination of ¢, the secular
motion of the perigee. The condition that allows
this result has been given: nez cannot contain
secular terms.

The determination of the constant of integra-
tion of dW/dE is a result of the condition stated
above, as well as the additional condition that
n¢6z can contain no term of the form sin £. This
second condition derives simply from the original
definition that ndz is the deviation of the real satel-
lite from Kepler's equation, and Kepler’s equation
already contains a sin £ term. It should be
emphasized that this is strictly a result of the way
in which neé:z is defined. We will presently show
that these two conditions dictate that the constant
of integration in W be ¢y+¢; cos F.

Thus, the final form of W is as follows:

I/I’:Z_)Z)g&, sk €08 [1E+25(w)+EF)
i j ok

+};;§E,Si, s sin (14 (2j+1) (o) +4F)

+ecote; cos F, (191)
where k=—1,0, +1.

The limits on % and the form of the coefficients
of (w) are not arbitrary but are purely results of
the way in which various terms combine. The
expression above is the general form of W in
every iteration. We need to know this form
before we can explain the determination of y.

Now, as can be seen above, and in accordance
with the condition that n,6z have no secular terms,
W is not allowed to contain any secular terms.
Therefore, since the integration is performed with
respect to I, all terms which have F alone in the
argument must be removed before integration. 1f
they were not removed, W would contain terms
of the form (sin F)E, a secular term. There are
no constant terms in dW/dE, as will be seen by
inspection of Equation 173, and so no secular
terms arise from this source. We shall presently
show that the only term of the series for dW/dE
which contains F alone in the argument is of the
form (A;+yA,) sin F where A; and A, are con-
stants. Thus, ¥ is determined in such a way
that this term disappears.

To show that dW/dE contains a term of this
form as the only term in /" alone, we must examine
Equation 173 which is

AW . daQ 2a,2 . Sy
a7 =NAT o, PMA St

We know the following:

1. The quantities r(0ay2/dr) and da,Q/OL are
series containing arguments of the form
tE+j(w) only, because both are the results
of “barring” r(0Q*/0r) and 0Q*/0F, that is,
replacing " by [

2. Also, W and » are series in 7 and (w) alone,

since W is W with the F’s replaced by I’s

and » is a function of W,

The quantity 7/ay=1—¢, cos I,

The quantity p/a,=1—e¢, cos F.

The quantities ho/h, h%/he?, and 1/(14v) are

series in £ and (w) ulone since they are all

functions of W,

o R W

We will now show that the products NAr(da,2/0r,
and MA(0a,Q/0E) can have only terms in +
alone, that is, no terms of +4F can appear with
|[k|>1. After this we show that NAr(0a,Q/0r)
and MA(0aQ/0FE) can contain only sin # terms
and can have no cos F terms.

Examining NAr(9a,2/0r), we can see from items
2 and 3 above that A contains only terms of K
and (w) since

2 7
A=t L<1+iy,jL
14\ vI—eg %
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and we know from item 1 that r(0a+2/0r) contains only
E and (w), not F. Furthermore, we know that A/
and N contain terms of the form cos (mE-+nF)
where —o<m<» and n=—1, 0, 1 (see Equa-
tion 173). This means no multiples of F other than
—1, 0, 1 exist in terms of M and N. Therefore,
it 1s evident that the product NAr(da,Q/0r) contains
no terms with multiples of F other than —1, 0, 1.
Exactly the same arguments can be used in the
case of MA(0asQ2/OFE).

Having seen that no terms of arguments kF
with |Z|>>1 can appear in the first two terms of
dW [dE, we want to show that only sin F terms can
appear, and no cos F terms are possible. The
proof of this rests squarely on two facts that are
ascertained by close inspection of the series forms
that go into @ and A. This inspection shows the
forms to be as follows. (In these series expres-
sions, €' and S represent only general coefficients.)

Q=2227 Oy ;cos [lE+2j(w)] +3527 Si;sin
[ i 7
[E4(27+1) (w)] (See Equation 118).

The two partials of @ then are easily found to be of
the form:

OE ZZ O, ;c08 [PE4+(274+1)(w)]
—2>23° 8. ;8in [{E+2j(w)]

and
00 . .
r $=zﬂ; C;,; cos [iE+2j(w)]
+ZZ Sy, sin [1E+(2541)(w)],
o
and the series A can be expressed as

AZZZ 01;']' cOs [iE+2j(w)]
+Z; Sy i sin (E+ (2] +1)(w)].

We know further from Equation 173 that A and
N take the general form

MZZ[CE Oi,k CcO8 (iE‘I‘IfF)

and

N:Z;Z; Siisin (E4EF).

Using these five general forms, we can see that
the following general forms of the product series

are produced:

Nar22E SV O,  scos[1E+(2+1)(w) +E )
T
ZZ; i x50 [IE+2j(w) -k F)
iJ
and
MA an —ZZZ Cy 5 nco8 [TE+H(2j+1) (o) +hF]

—%—szz S sin [1E+25(w) +EF].
i j k

It is evident from these series forms that neither
of the two terms can contain cos F' terms since
all cosine terms must also have an (»). The sine
terms can clearly be in F alone, but only £ F, as
we have shown previously. Thus, we know that
only one term in the series for

bag a2

oK

NAr +MA
can contain F alone, and that term will be of the
form A4, sin F.

Let us now examine the third term of dW/dE,
that is,

Sy P oW _ < )
\5,1_602; where S— a OF W—I—l—i—h o sin F.

(See Equation 173).

We can examine S alone, since y and e, are con-
stants. First let us look at W. We can show,
by examination of Equation 191 that

W=c¢+e¢, cos F4Periodic Terms,

but contains no terms other than ¢, cos F which
have F alone in the argument. We know this
because all such terms are removed from dW/dE
before it is integrated. The ¢, cos F' term is part

of the added constant of integration. From this
fact we know that
%I;, —¢; sin F'+Periodic Terms,

again containing no terms in # alone other than
—c, sin F.  So we see that, since

£=1—€0 cos |
0
the first term of S,
» W
ag OF
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can be written
p oW
a, OF

—=(1—ey cos F)(—¢; sin F
+ Periodic Terms in E and F)

=—¢, sin F—I—% Cieg sin 2F

~+Periodic Terms in F and F.
The second term of S is

(W—I—l—{—%’) €y sin F=We, sin F'+e¢, sin I
—{—% ey sin ¥
=coey sin Ft+¢ie, cos Fsin F
¢ sin F'4Periodic Terms in £ and F,
since ho/h is a series in E. Therefore, S becomes
S=[—e;—e4leo+1)] sin F

S -+ Periodic Terms in £ and F.
0’

dW .
JE = (Aitydy) sin F
+Periodic Terms in £ and F,

—Ar=[e;+eo(cot+1)W1—e.

Thus, from Equation 192 we are able to see that
proper adjustment of y leaves dW/dE with the
desired periodic terms in E, (), and F. We now
turn to the constant of integration problem.

(192)
where

CONSTANT OF INTEGRATION OF W

As we have stated before, the condition that
dictates the form of the constant of integration in
W is that ngz is defined to be the deviation from
Kepler’s equation:

E—eo Sin E:go+n0(t—t0)+n062. (Equat’ion 75)

Therefore, since a constant term, a secular term,
and a term of the form sin £ all appear in Kepler’s
equation, none of these is allowed in ngéz.

Returning to the differential equation (Equa-
tion 154) we have

dngz W47 1=\ gy (2)2
dE ~ 1+Wa, (1+W V1—e? \%

which after minor rearranging can be written

dnﬁBz:W‘r (v2~—W2 7 Yy

r _ 1—? _7_2 )
dE @ \ 14+W @ J1—¢2 1+W ai
(193)
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From this equation, we can derive a form con-
venient for the use of the iteration process. In
any given iteration loop, the factors and the terms
in parentheses are all of the previous iteration,
with the exception of y which is the latest value
found. For W in the first term on the right-hand
side of Equation 193 we ‘“bar’ operate on Equa-
tion 191 and get:

W=c¢o+e cos E+353330;, cos [iE+2j(w)]
i
+203°8:;8in [iE+ (2 + 1) (w)].  (194)
[

It should now be clear that we set the form of
the constant of integration in Wto be ¢y+¢, cos ¥
in order that we could use it to remove the con-
stant terms and the cos K term of the series for
dnedz/dE. If not removed, these terms would
give secular terms and a sin E term after integra-
tion. Thus, ¢, and ¢, are set in such a way as to
make the terms disappear before the integration.

The subsequent expressions for ¢, and ¢, are
obtained as follows. Since we are using previously
generated series for the terms in parentheses in
Equation 193, and the new series for W in the
term W(?/ao), we have:

d—(?ffz: (eg+c1 cos E)(1—e, cos )

+30 33 Oy cos [iH42()]
t 7
+2>0 20 Siysin [iB+(25+1D)(w)], (195)
1 7
since 7/ay=1—e¢, cos £. By means of the stand-

ard trigonometric identities, Equation 195 becomes

dngdz 1 1
dOE =t—g ¢1eo+ (c1—cCoey) oS E“Q ¢iey cos 2

+2 EJD s, 5 cos [1E+2)(w)]
+25 E;, Si,psin [1E+(2j+1)(w)]. (196)

The two conditions that the constant terms and
terms of the form cos E must be eliminated dictate
that

1
00—5 0160+00,0:0 (197)

and

61_0060+ 01'0:0. (198)
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And a further consequence is that the coefficient
of cos 2E in Equation 196 must be added to the
coefficient (;, , of the series. From Equations 197
and 198, we are able to write

Cr.o+2C
¢h==—-<994§§§53729> (199)
and
cfz——<gf£%%§£§£lf>. (200)

[Note: These values can also be found by itera.
tion. See Appendix B, steps 61-67.]

Putting these values into the series (Equation
194) gives a final series form of W. We now are
able to write that dn.6z/dE consists of periodic
terms only. When dnéz/dE is integrated, the con-
stant of integration in n.8z is set equal to zero, as
a result of the condition that n¢z contain no con-
stants. And so we are able to develop series for
W and ngz for each iteration. We now must
turn to the secular motions « and n and the con-
stants involved in the integration of the ) differ-
ential equations.

DETERMINATION OF « AND 1

The differential equations for the X’s, Equations
181 through 184, provide an easy determination of
a and 7. Recalling that the N's were defined in
such a way that they contain no secular terms, it
is at once clear that the derivatives can have no
constant terms. The expressions for di,/dE and
dXs/dE are especially convenient here. They are
given by

Do 1k a0
JE= A 3 o T oot a‘l/cos (—Asl—Am)A
(201)
and
1h Q .
%=+n)\4 §h~0\/1ﬂ2_2%¢cos 1(l+Am)A.
— €0

(202)

We know that the series for A\, and A, contain con-
stant terms, since the first approximations to X
and )\, are sin (14/2) and cos (iy/2), respectively.
We also know, from the way they are defined, that
A; and ); can contain no constant terms, The
first approximations are A,=X\=0. (We point

out again that in Equations 201 and 202, the A's
that appear on the right-hand sides are N’s of the
previous iteration.)

If we let
ik 00
T_2 N Y (cos ©)A, (203)
bi=constant part of A,, (204)
and
b,=constant part of T(—xsl —x,m), (205)

then we remove the constant part of d\./dE by
setting
=5

o4

(206)

In a similar manner, taking the expression for
d\yJdE, Equation 202, and letting

: b;=constant part of T\ JJ+A\m)  (207)
an
by,=constant part of Ay, (208)
we have
__b

We now are able to integrate formally all the
A derivatives. Upon integration, we are able to
set the constants of integration in A; and A; equal
to zero, since our conditions dictate that \; and
A; contain periodic terms only. It is a little more
involved to find the arbitrary constants in A; and
M. Two further conditions must be satisfied, and
these govern the arbitrary constants in A; and \,.
They are:

1. That AZFA2+N24HAS=1.
89.)

2. That the principal term in the latitude must
have the form sin i, sin [f+(w)]. (See
Equation 87).

Since we had the form of the latitude

(See Equation

$=2(A\A—Aa\g) sin [f+(w)]

+(2MahsA1Ns) cos [f+ (w)], (see Equation 91)

condition 2 dictates that the constant part of
2(MAs—A2);) be sin 7.

Now, we have stated previously that parts of
the constant. terms of A, and A, are the first approx-
imationss, in (p/2) and cos (iyf2), respectively,
and we know that neither A; nor A, can contain
secular terms. Let us arbitrarily pick a form for
the constants of integration which will enable us
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to satisfy the two conditions above. We write
the final forms of A; and Ay
)\1—5111 (A + B)H-6xy, (210)
\y=c08 %"Jré (A—B)+-6),, (211)

where A and B must be determined; and
5k12220i’j (€01 ['LE‘*“L’](O))]
T

+22238: 5 sin lE+(2j+1)(w)], (212)
i

N=2.2>.C; ; cos LE+2j(w)]
i 7

+2;Sw sin PE+(2j+1)(w)].  (213)

These forms of A, and A\, are actual series forms
arrived at alter several iterations. Likewise, we
find that

M=23238; sin [1F+2j(w)]
i

F3300,, cos TE+2j+1D(w)], (214)
t 7
My=2.28: ; sin [iE£+2j(w)]
o
+232°0: ;5 cos [IE+(2j+1)(0)], (215)
t 7
where in final form,
Na=0Ns, (216)
Az=0N;3. (217)

Taking the final forms of the N's (Equations 210,
211, 216, and 217), we apply them into the two
conditions

)\12+)\22+)\32+)\42:1 (218)

and

constant part of 2(AA;—N\A;)=sin 4,.  (219)
In this procedure we must remember that even
though A\, and A\; do not contain constant terms,
their product terms will. The following results
are obtained by setting the constant parts of
each side of Equations 218 and 219 equal, and
by setting the periodic parts of each side equal.
Clearly, in this manner, the periodic parts vanish
from the equations and we have the forms from
which A4/2 and B/2 are determined.

After making the substitutions, we find that

9
-'—‘Slll -
2)

+[constant part of (8A2+ A2+ 0N2-H8N2)]=0

1 4o 2 s oy i o —
5 (A2+ B+ A (cos 2+sm 2) B <cos

(220)
and
= ( =B+ A <LOS 2isin ~>—}—B <cos ——sin 2{)“
+[constant part of 2(8\0A,—:005)]=0. (221)

Solving Equations 220 and 221 for A and B, we
get:

A?42.4 <cos %—I—sin %)—}—constant part of

[(0A 40X, )+ (8N —0Ne)*]=0  (222)

and

B*—2F <005 b_gin® —}—const(mt part of

[(8N =X ) (8XaF0X,)? =0. (223)
It is preferable to solve for A and B by iteration
rather than by the quadratic method, so we re-
write Equations 222 and 223 as

_ é>2
4. 4 72/, (224)
° cos Pgin 10
R 2
B
B ‘+< >
LA (225)
N coq%—smé’

where H and @ are the bracketed terms of Equa-
tions 222 and 223, respectively, and the A4/2 and
B/2 used in the right-hand sides are the values ob-
tained in the previous iterations.

We have now described completely the tech-
nique and reasoning used in the determination of
the secular motions ¥, «, and 7, and the constants
of integration in W, n, 6z, and the four A’s. These
six formal integrations are the only ones which are
performed. All other determinations use the iter-
ation process, as we have shown. The next sec-
tion attempts to outline in detail the entire pro-
cedure used in the generation of the final series
forms which are used in the eventual predictions.
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SECTION VIII
PROCEDURE USED IN THE GENERATION OF FINAL SERIES FORMS

DISCUSSION

In the preceding sections we have developed
explicit expressions for all the equations which
must be solved in the problem. It is now possible
to discuss the entire procedure for the generation
of final series forms, using the various expressions
found.

It is important to emphasize one point.
Throughout the process of iteration, our goal is to
ascertain final, “good” series expressions for the
following functions: n¢z, », A, Ay, As, and A,
We start out with approximations to these series
as follows:

nebz=0,
v=0,
.1
Ar=sin 5
)\2:0,
)\320, .
)
Ay=C08 9
Out of the iteration process, we eventually

converge to series which express accurately these
six functions as functions of the eccentric anomaly
of the fictitious satellite £ and the mean argument
of perigee (w), which is in turn a function of E.
Out of the process come the three secular motions
Y, o, and 7. Conceptually speaking, the entire
procedure is one of separating all secular motions
from the periodic motions. Thus, series are
generated which give the motion of the fictitious
satellite as defined, and give the relationship
between the two coordinate systems. And so,
the final value of y and the final series form of
nodz provide that all the periodic angular perturba-
tions of the satellite in the orbit plane are con-
tained in the mean anomaly, and the secular
motion in the plane due to disturbing forces is
contained in the secular motion of the perigee.

We must remember, therefore, a fact that is
often overlooked and consequently is the cause of
consternation in studying this theory. None,
absolutely none, of the series is evaluated until the
final series forms are determined after several
iterations. Only the coeffictents of the trigono-
metric terms are calculated; the terms themselves
are not, but are carried along throughout the itera-
tion process. The iteration process is used to

arrive at final series forms expressed with numeri-
cal coeflicients multiplying trigonometrie terins of
indexed arguments. Once the final series are
developed, we go into the final stage where we can
predict the position and velocity vectors ol the
real satellite at some future time ¢. Thus, there
are two major phases of the development: the
generation of final series forms, and the calculation
of position and velocity at various times.

The first of these phases has been written as a
machine program by G. E. Collins of IBM, in col-
laboration with Paul Herget of the Cincinnati
Observatory. Its IBM code name is the General
Oblateness Perturbations (GOP) program. The
second phase, considerably more straightforward
than the first, has been written as a program by the
IBM Space Computing Center and is known as the
IKINT program. Now, let us trace through the
procedure used in the first of these two phases.

For any given satellite, we must begin with
nominal values of the three elements a, e, and 3.
The theory calls for “mean” values of these oscu-
lating elements, which we will assume we have.
In actuality, these are determined by starting with
nominal values, predicting an orbit, running an
orbit correction, and then correcting the values of
a, ¢, and 7 used. But let us say we have good nu-
merical “mean’” values of a, ¢, and 7 which we
designate as ao, ¢, and 4. Only these three ele-
ments are needed in the development of the series.
We also need values of the three geodetic param-
eters ks, k3, and ks, Next, we need the following
first series approximations, each of which is used
in an iteration process:

a8
2

h

A=Ay =0; =L

A= COS }29§ h l - (226)
}70— ’

W=0;
A=0;

VZO_; J

and we need first approximations to the constants,

4_B_

y:() and 5——5 Q.
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The first step is to develop the series for dW/dE.
This involves the partials 0Q*/0F and »(0Q*/or)
which are readily found, once Q* is developed in
terms of y* where the N's are those listed in
Equation 226 for the first approximation, after
which the last series obtained for the N’s are used.
Taking Equation 173,

aw
dE

ban QoL

Y 1—60

we see that N and M contain a/hoand 1/(1+v), so
we must usc the series forms obtained in the previ-
ous iteration. The same is true of the », W, and
ho/k that appear in A and S. And finally, we see
that y appears twice in dW/dE; as a coefficient of
S in Equation 173, and in the expression for A. In
the expression for A, the value of y previously
determined is used, whereas the y multiplying S
is the ¥ to be determined by the removal of sin F
terms from dW/dIE (see Section VII).

Once dW/dE is determined and the sin F terms
are removed, it is formally integrated and the con-
stant of integration ¢o+¢; cos F is added. Keep-
ing ¢o and ¢, undetermined as yet, we “bar’”’ the
new series for W to get W which has now the
terms ¢o and ¢; cos E. Keeping this series for W
available, with ¢o and ¢, still undetermined, we
turn to our expression for dneéz/dE

d nydz_

_|_< el L y 1—=v i)
([E 1+W aO N‘J‘l’_e():z 1+W a02

(Equation 193)

Into this expression we put the » series deter-
mined in the previous iteration (or, in the case of
the first iteration, »=0). In the term in paren-
theses, we also put for W the series determined
previously. The y is the number just found prior
to the integration of dW/dE. Then, in the first
term, W(7/ao), we put the W series just deter-
nnned and find ¢o and ¢; so that no constant terms
or terms of the form cos E appear in dn.éz/dE.
The expressions for ¢o and ¢; are given in Equa-
tions 199 and 200. With ¢, and ¢, evaluated, we
formally integrate to get the series for neéz, which
contains no additive constant of integration for
reasons given in Section VII. We now also have
the new series for W and W since ¢, and ¢; have
been determined.
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Our next step is to take the new series for Wand
write it in the form,

W=Z=-+T cos F-+¥ sin F.

This is accomplished by scanning the series W
and first picking out all the terms which have no F
in the argument, a series we call =. Next we are
able to find T by putting F=0 in all the terms in
which F occurs. It should be remembered that &
only takes on values of —1, 0, 1 in the series for W
(Equation 191). This splitting process simply uses
the trigonometric identity for the sine or cosine of
the sum of two angles. With the series for = and
T determined, we turn to our equation for A

1, 2. .,
A:'—'g (:+60T)+§ (A'—A3+ . )
(Equation 188)

Using the value of A of the previous iteration, or
for the first iteration A=0, in the right-hand side,
we solve to get a new series for A. Properly, for
any iteration, the expression should be written

Avai=—g Ete0) 5 (A2—A7+ ). (220)
In any given iteration of the whole program, that
is, when new series for W, W, neéz, ete., are found,
we iterate around Equation 227 n times, until
|A 41— A< e where e is some arbitrarily chosen
small number. This A,., is the A to be used in the
determination of A/ho, hofh, and ».

With the A series deterniined, and with the =
and T series used above, Lo/h and A/hg are found
simply by substitution in

ho

~—1—{-A (Equation 186)

and

1 .
7ib-=1+§ (A+E+e,T). (Equation 189)
0
These series for ho/k, h/ho, and A are then put aside
with ¥ and neéz for use in thenext overall iteration.
The last series to be found is that for »,

Vzé (A=)~ (T+a).  (Equation 190)
We use the same type of iteration of this equation
that was used to find A. Here, the A used is the
one just found and stored, and W is simply the
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last. W determined. Again, the expression should
properly be written
1 = 1 =
nr1=g (A—W)——-§ (W4)v,, (228)
where n is the number of the iteration of the
above equation. The series v, originally put on

the right-hand side is that determined in the last
iteration of the whole program.

THE X DERIVATIVES

We can now turn to the computation of the
A series and their constants of integration. Taking
the expression for d\;/dE as an example, we can
illustrate the procedure used in all the four

derivatives (Equations 181 through 184). Thus,
(])\1__ _1_ i . Qy @_ . _
d—E—a)\2+2 7 Ji—ed oy cos 1(Al—Nsm)A.  (229)
It is readily seen that the factor

1h a 00 .

§ h_o \/—1———302 —a—ll/ (COS Z)A (230)

occurs in each of the four derivatives. This factor
is developed using the h/h, series determined in
the previous iteration, not the one found in the
steps immediately before this. We use the previ-
ous series to assure consistency through the overall
iteration process. The 0Q/0¢ was found by oper-
ating with the “bar” operator on 0Q*/0¢* and
cos ¢ we have noted to be

COS /l:: )\42+ )\32_)\22_)\12,

where the Ms are those resulting from the previous
iteration. The A factor is the same as that used
in the formation of dW/dE. As was true of the
Ns that occurred in the expression for cos 4, all
the other Ms on the right-hand side of Equation
229 are those of the previous iteration. This
leaves only « undetermined.

The determination of o and n was described in
Section VII, on the basis that di\,/dE and d\,/dE
must contain no constant terms. In any itera-
tion, @ and 5 are determined as described before
any of the X derivatives are integrated, since the
expressions contain the value of « or n just deter-
mined. Thus, di\/dE and dx;/dE are formed
before dM/dE or di/dE. Once a and 5 are
found, the four derivatives are formally inte-

grated. No constants of integration are added
to A or A;, for reasons previously discussed, so
the integrated forms are stored as the new A,
and A;.

The constants of integration added to

dn and fdM

dE dE
have also been discussed previously. The forms
are
o @ 1 X,
N—sin 041 (A+B)+fd—E, (231)

1 dr
M=cos 241 (4-B)+. f o,

(232)
where A and B are determined by iterations of
Equations 224 and 225. As was described in
Section VII, H and @ in the latter are functions of

B, [ [ ong [y
dE’ ) aE’ ) aE’ "¢ ) dE
before the constants of integration are added.
The iteration process is to be handled in exactly
the same manner as in the cases of A and », so
we could write Equations 224 and 225 ag

_E_C&)?
An+1 4 2

—_——

2 T, - Lo
cos 2—+s1n 5
G, /B,)\?
Bn-%—l__. Z+<?>
5 =

cos %—”——sin %)
After the iteration process gives convergence to
some A/2 and B2, the new A\ and )\, series are
given by Equations 231 and 232.

We have now traced through one entire iteration
of the first phase of the solution. We have gene-
rated in this iteration new series for W, W, Nd2,
holh, hiho, v, A, N, As, Ag, and A,. We have also
evaluated new values of the constants y, o, 7,
A2, and Bf2. With the iteration complete, the
test for convergence is made with the secular
motions, If

I?/n+1_2/n|<f,

!an+1_anl<f;
and
' [nn+l_"’lnl<6;
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(where e is some arbitrary small number) the
series are considered to have converged. If not,
the entire process is repeated as outlined. This
completes the description of the first phase, that
incorporated in the IBM program known as
GOP. Appendix B has been included as an aid
to those interested in the programming of this
development. It lists one possible method of
attack but does not represent the only valid
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computational procedure. As can be seen from
Appendix B, this program develops the X's before
it finds the series for ho/h, h/h, and ». This order
is preferable in that the A/ky series used in the X'g
is that of the previous iteration, as discussed
earlier.

We next turn to the second phase of the solu-
tion, that of producing a position vector of the
real satellite at certain values of ¢.

SECTION IX

DETERMINATION OF FINAL POSITION AND VELOCITY VECTORS OF THE REAL
SATELLITE AND ITS OSCULATING ELEMENTS

INTRODUCTION

The entire development thus far has led us to
series which express exactly the perturbations of
the real satellite and the motions of the orbit plane
as functions of the eccentric anomaly. We now
turn to the second phase, the determination of the
position vector as a function of time. We know
the motion of the fictitious satellite to be given by

7 sin fzaox/l—eoz’ sin £
and _
7 cos f=ay(cos F—e,).

Also, we know the relationship between r and 7 to be
r=(14»)7,
and the relationship between the eccentric anomaly

E of the fictitious satellite and the real time # of
the real satellite to be in Kepler’s equation

E_e() sin E:!]0+n3(t_t0)+n062.

Thus, we are in a position to find the radius vector
of the real satellite in the rotating XYZ coordinate
system. However, we have to perform a rotation
operation in order to express the position vector
in terms of zyz coordinates, that is, inertial co-

ordinates.
THE ROTATION MATRIX

The XYZ system has been rotated through
three angles with respect to the zyz system.
If we rotate the position vector through these
same three angles with respect to the ayz system,
the new components in the XYZ system are the
same as those of the nonrotated position vector
in the zyz system. Therefore, if we can find a
rotation matrix operator which expresses the
rotation of XYZ with respect to 2yz, we can oper-
ate on T with it to get r in the inertial system.

One important thing to note here is that, for
purposes of developing this matrix, we want to
rotate our X axis from the z axis to the line in the
plane of the orbit, from the origin to the perigee.
This allows us to express T in the XY Z system in
two components: 7 sin f and 7 cos f, where f
is the true anomaly of the ellipse, that is, the
angle between the position vector r and the line
from origin to perigee.

Therefore, to rotate from the xyz inertial, or
equatorial system, into the XYZ system where
the XY plane is the plane of the orbit, and the
X axis goes through the perigee, we rotate through
three angles. Starting with the X, Y, and Z
axes lying along the z, y, and z axes, we first
rotate the XYZ system about Z, through the
angle 8. This leaves the X axis lying along the
line of the nodes. Next we rotate the XY plane
about X, through an angle 7, putting the XY
plane coincident with the orbit plane. Finally,
we rotate the x and y axes about Z again, until
X passes through the perigee. Clearly, this
final rotation is through an angle (r,-+yAE—0).

A rotation about the Z axis through an angle «
is given by

cos ¢ —sin a 0

Ajla]=|sin @« cos « 0|, (233)

0 0 1

and a rotation about the X axis through an angle

8is

1 0 0
Aj[Bl=[ 0 cosB —sing|. (234)
0 sin g cos 88
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Therefore, our total, or triple rotation, desig-
nated by T, is clearly:

T =A4,[0]A:[t]Aglmy+yAE — o]

But from Equations (82), (85), (71), (83) and (86)
we know that

0= (0)—N-+K and (mi+yAE—0)=(0)+N+K,
S0 we write
I'= A ()] 45 K— N]A,[1] 45 N+ K] 4] ()],
knowing that Ajley+ a]=A43(e1)As(a). We wish

cos 2a cos 28—sin 2« sin 28 cos @
¥=| sin 2« cos 28+ cos 2a sin 28 cos ©

sin 28 sin 1

which we write as

M Az A
Y=|Ax Az Az |.
s Asz Mg

Throughout the following development of the
A » terms, we use the definitions

% 7

A\1=sin 5 C0S N, A;=¢0s 3 sin K,
.1 3
Az=sin 5 sin N, A;=C0s 5 cos K,
and
K=a+43,
N=p—a,

and we have

Ar==sin % cos (B—a),

Ao==sin % sin (8—a),

A3=C0S % sin (8-+a),

Ay=cos % cos (8-}-a).

Now, we put

—cos 2« sin 28—sin 2a cos 28 cos 7

—sin 2« sin 28+ cos 2« cos 28 cos 1

to express A K— N]A [1]As{K+ N] as one matrix
in terms of N;, Ay, As, and A, We shall call this

matrix .
Making the transformations
K—N=2a K=a+8
K+N—25]  |N=p—a|’
we have

\[/=A3[2a]A1[i]A3[26].

This is given explicitly by

sin 2« sin 7
—c0s 2asint

cos 28 sin 2 cos 1

Ap=cos 2a cos 23—sin 2« sin 28 cos 1

:—-,:sin2 (%)-I—cos2 (—;—):I cos 2« cos 28
—l:cos2 (%)—sin2 (%):I sin 2¢ sin 28

An=cos? (—;—) (cos 2a cos 28—sin 2« sin 28)

or

-+sin? (—;—) (cos 2« cos 28+sin 2« sin 28)
=¢os? (%) cos 2(a+B)+sin? (%) cos 2(8—a)
=co0s? (%) [cos? (a+B)—sin? (a+8)]

+-sin? (%) [cos? (6.—(1)——Si112 B—a)].

Then, employing A, . . ., Ay, we have
)\11-:)\12—‘)\22—)\32‘1‘ )\42-

The same type of substitution and manipulation
gives

Ap= —2()\3)\4‘*‘ )\1)\2),
)\13:20\1)\3—)\2)\4);

At =2 AsM—NNs),
Aa= A=A — NN,
A= _2()\1>\4+ )\37\2),
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Ay =2 ()\1>\3+ )\2)\4),
)\32: 2 (>\4)\1 - )\2)\3)y
Aaz= A+ A — N — AL

We now have our T' matrix

A11 Al? A13
T=AO)]| Aas A2 Ass [As[(w)], (235)
As1 Asz s

which represents the transformation of coordi-
nates from the osculating system to the equatorial
system. Consequently, we will get the position
vector in the equatorial system by the operation

ao(cos E—eg)
r=(14»)T{ q, sin Ey1—eg® |
0

(236)

since ay(cos E—e,) and a, sin Fyl1—¢? are the
components of T in the X and Y directions,
respectively, considering X to be along the line
from the origin (focus) to the perigee. Once
the », y, and z components of r are known, any
other coordinates of the satellite can be readily
found by elementary trigonometry.

DETERMINATION OF r FOR A GIVEN ¢

It is immediately evident from Equations 235
and 236 that we can find r for any Z if we know
wy, 0o, and F, since we have series for » and the
N's in terms of £ and (w), where

(@) =wot+(y+a—nE—y+ta—nF,.
We need 6, in the T matrix, where
A3l (0)]=As[00— (a+nE+ (a+n) Eol.

We have already found the final values for y, «,
and . However, to get the components of the
position vector at some time f, we must deter-
mine the value £ which corresponds to that time
t. As well, to evaluate any of the series, we need
to know the value F;, which corresponds to t,.

We proceed as follows: Taking Kepler’s equa-
tion, we find the K, at ¢, by iteration. In this
case, Kepler’s equation gives

Eo_eo Sin E0=g0+n0(t0—t0)—{—n052, (237)

where ¢o, the mean anomaly at the epoch, must
be given. In the first iteration, we solve Equa-
tion 237 by letting m82=0. This gives us a
value E;, which we immediately put into the
series generated for ngdz:

ny62=Fourier series in

[iB+i( ot G+a—nE)—jt+a—nEs ]

(238)
which becomes

n¢dz=Fourier series in [tFy+jw,].

Taking the ny6z, a numerical value, and putting
it back into Equation 237, we solve to get the
second approximation to E,, which we put back
into Equation 238 for a second approximation to
n¢dz. We repeat this iteration process until

] (EO)n+1— (EO)n| <€,

at which point we take E, to be known for t=t#,.
Next, we turn to some time ¢ for which we wish
to know the position of the real satellite. Turn-
ing first to Kepler’s equation, in the first approx-
imation we let n¢z=0 and solve for Z. Then,
we put £ and FE, into the series for n,6z and solve
for a numerical value, which we then put into
Kepler’s equation to solve for a second value of
E. We continue in this iteration process until

lEn-H—b'nl <€.

Once we have determined the value of £
corresponding to f{, we are able to compute
numerical values for Ay, Xs, A5, Ay, {1+»), and can
find (w) and (8) as well as ag(cos E—e,) and
agy1—eg? sin E. Thus, we can easily put all
of these values into Equation 236, and the com-
ponents of the radius vector of the real satellite
in the inertial coordinate system will emerge.

DETERMINATION OF THE VELOCITY VECTOR
AND OSCULATING ELEMENTS AT TIME ¢

Bailie and Bryant have published (Reference 9)
the method by which the velocity vector of the
real satellite and the osculating elements at some
time ¢ are determined. The relationships follow
directly and simply from the development dis-
cussed here.
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Recalling that the W function was split up to
give

W=E-+17 cos '+¥ sin F, (Equation 135)

Bailie and Bryant define the two quantities

s=atie (55, (239)
and

_ho \/ 1_602

S a2 (240)
Further, they use the components of the T

rotation matrix written as
P2 (G (Rz)'l
r=l (P) (@) R}
P (@) (Rz),l

where (P,), (@),), etc., are the components in the
inertial system of unit vectors P, Q, and R. The
unit vector P is in the osculating plane and is
directed toward the perigee, R is normal to the
plane, and Q=R XP.

Bailie and Bryant give the components as:

(241)

(P)=~+ N\2—N\?) cos [(w)+ (0)]—
+ (M —X2?) cos [(w)—(8)]
— 2N\ g sin [(w)—(8)],

2NAesin [(w)+(8)]

(P)) =+ (A=) sin [ () + (8)] -+ 2Xs), cos [(w) 4 (6)]
— (M2—Ne2) sin [(w)— (8)]

—2X\As cos [(w)— (8)],

(P =42\ N—Na)g) sin (@) + 2N+ MAs) cos (o),

(@)= — (A2— ) sin [(w) + ()] —2As\s cos [ (w) + ()]
— (M2 —N) sin [(w) —(0)]

— 2\ €08 [(w)— (D],

(@) =+ (A= A)cos [ (@) + (6)]— 2Ny sin [ (w) + (6)]
—(\P—=NsP) cos [(w)—(6)]

+ 2N, sin [(0)—(0)],

(@)= +2\N—2A2);) €08 () —2(AA s+ Ms) sin (w),

(B2)=~+2(N\N+NAg) sin (0) —2 (AN —N)g) cos (6),
(R)=—2(MAs7-N2N3) cos (8) —2(N2he— N Ay) sin (6),
(B =NHN— NP\

After some straightforward analysis the fol-
lowing results are obtained giving the velocity

vector v of the real satcllite and the osculating

elements in terms of 8, v, the components of P, Q,
and R, hof/h, h/hy, and the N's:

__sink A 1
1_60 COSEhO 2
1

V=—"=T|/1—¢2cos E h , J1—ei~| (242)
\/— 1—ey cos E h0+ 2 Y

0

Z

“0(1_602) (h") (243)
=J62_+?, (244)

ton im PSS (245)
tan o g%;—f;—%g (246)
= PI@I=@QP)

) (Q)— (@) )

And from the osculating value of the eccentric
anomaly

[14eq E e~B
tan -
1+€ tan ose Eosc 1_60
1—e —B \/1+e0
1—e,
the osculating mean anomaly M is found in
Kepler’s equation:

M:Eosc—

= (248)

e sin K. (249)

The components of the three unit vectors are
easily arrived at, but are given explicitly by Bailie
and Bryant, in terms of the four A parameters and
the mean values (w) and (8).
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SECTION X
EVALUATION AND CONCLUSION

This theory contains certain areas in which
trouble may arise for particular values of the ele-
ments. The three areas of difficulty in this theory
are (1) small eccentricity, (2) large eccentricity,
and (3) an angle of inclination in the neighborhood
of the critical angle.

SMALL ECCENTRICITY

The first of these difficulties is not a weakness
of the theory itself, but rather of the way in which
it has been adapted for machine use. We recall
that in the determination of the secular motion
y, the technique involved was that of finding ¥
such that no sin I terms appeared in the series
for dW/dE. We solved an equation for y (see
Equation 192):

A1+’yA2:O, (250)

where A; and A, are numerical values of coeffi-
cients. Upon close inspection of the explicit
expression for dW/dE, it becomes evident that
this equation can also be written as

eA{+y(eds)=0,

g
Y=""ay

or
(251)

since the eccentricity appears explicitly in the
coeflicients which are summed to give A;:

A= (eqt;+efastefasteas+ .. )sin . (252)

From the last term of dW/dE (see Equation 173),
we see that

Az;=eyA;sin F. (253)

The difficulty arises, not specifically from the
appearance of ¢, in the denominator of Equation
251 but from the fact that in Equation 252 the
machine is adding a series of very small numbers
during which process a large error can accumulate.
When this sum is divided by a small number,
eoA;, the accumulated error is greatly magnified,
and can easily exceed error limitations. An edu-
cated guess as to the lower limit of the eccentricity
would be on the order of 0.001.

LARGE ECCENTRICITY

The problem with large eccentricities is that the
series for ao/p and /7 converge very slowly,

owing to the presence of the factor 2/y/1—eo*:

a 2 1
-PT_\/I——eO? <§—|—6 cos F'+52 cos 2174 . . )
(Equation 108)

It would be desirable to have different series ex-
pansions for a,/7 and a,/p for large eccentricities.
It is impossible to find one series expansion which
will give reasonably fast convergence for the entire
range of eccentricity, 0<(e,<(1. Also, the factor
1/(1—e,%) appearsin the development, for example,
in the M and N factors of the derivative of W.
The factor places a limitation on ¢, The numeri-
cal procedure described in this development is not
satisfactory for eccentricities larger than approxi-
mately 0.90.

THE CRITICAL ANGLE OF INCLINATION

It is a physical fact involving the particular
oblateness of the earth, that at some angle of
inclination in the region close to 63.4 degrees the
forces disappear which gives rise to the secular
motion of the perigee of a satellite. This is a
result of oblateness symmetry with respect to a
plane passed through the earth at this angle to the
equator. The angle will vary slightly from 63.4
degrees depending upon the geodetic parameters
used in the potential function. But, nonetheless,
there is some angle at which the secular motion
of the perigee vanishes, or, in our notation,

Y+a—n=0.
This leads to a problem primarily in the integration
of the series dnydz/dE; the same problem is present
in all the integrations, but in those of dW/dE, and

dNdE, the coefficients of the terms involved are
very small and the difficulty is not readily ap-

parent. We recall the series dn¢dz/dE is of the
general form
dngdz

o :;JZ {C;,; cos [PE+2j(w)]

48 ssin[{E4-(2j+1)(w)]}.
(Equation 195)

If we take the term of the series where =0 and
7=0, we have the sin () term, where we know

(W)=wyt (y+a—nAE,
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with AE=FE—E,.
respect to I, that is,

So we must integrate with

fsin (w)dEZISin [wo+(y+a—nE
- (y+a_77)E0]dEy
which gives

. ___cos (w)
fsm (w)dE= R p—

It is evident that this term becomes meaningless
when (y+a—n)—0, as it does at the critical angle.
This renders the theory unsatisfactory in a very
small region about the critical angle.

We see that the term sin () is actually a very
long period term in the region, and a constant at
the critical angle. It might at first seem possible
to separate the constant part of the term from
its periodic part, but the periodic part would have
to be considered secular and disallowed first order
secular motions would result in the A parameters.
This weakness in the theory seems to be inherent
and unavoidable.

In the other integrations, these long period terms
are of a very small magnitude, and the limitations
due to series truncation have thus far made it
difficult to evaluate their significance.,

ACCURACY

The theory, as stated in the introduction, is an
exact one, which includes all orders of perturba-
tions. The accuracy is that of the geodetic param-
eters k,, k3, and k, in the potential runction.
However, in practice the accuracy is greatly
affected by the truncation of series and the number
of significant figures carried in the machine. The
great number of series multiplications taxes the
storage capacity of even the largest machines, so
the question of series truncation is a serious one.

|[UNITS

It has been found that the Vanguard system of
units is quite satisfactory in this development,
although by no means is it the only valid system.
The theory can use any system so long as it is used
consistently throughout. The Vanguard units
allow that the product of the mass of the earth and
the universal gravitational constant is unity. The
unit of time, also a Vanguard unit, is the amount of
time it takes an orbiting satellite at a distance of
one mean equatorial radius from the earth’s center

to travel one radian. 'This is

1 Unit of Time=806.814 mean solar seconds.

The unit of length, considered one mean equatorial
radius, is

1 Unit Length=6,378.165 kilometers.

CONCLUSION

The theory described has been adapted to make
optimum use of the capacity and speed of modern
computing machines. It is a purely numerical
theory, the accuracy of which is determined only
by the accuracy of the geodetic parameters, and in
practicality, by the limitations of series truncation
in the machine. The theory described deals only
with general oblateness perturbations, but is
easily adaptable to the inclusion of other per-
turbing forces, including solar radiation pressure,
solar and lunar perturbations, and the effects of the
tesseral harmonics in the earth’s gravitational
potential. Though this exposition has dealt only
with the first three harmonics of the earth’s
potential function, higher harmonics can be
easily included.
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APPENDIX A
COROLLARY DERIVATIONS

BASIC EQUATIONS OF AN ELLIPSE
A basic property of an ellipse is

@=b+, (A1)

where a is the semimajor axis, b is the semiminor
axis, and ¢ is the distance from the center of the
cllipse to one focus.  The eccentricity of the ellipse
is defined as the ratio

fi

RN

e (A2)
If we let the center of the ellipse be the center of
a Cartesian coordinate system, and let the z axis
lie along the semimajor axis, we can write the
equation of the ellipse as

x? 2

=l (43)
and we can then solve for y, which is the distance
r sin f (see Figure A1), by the equation

y=\/b"’ (1_52):7“ sin f.

(A4)

Ficure Al.—The geometry of the ellipse.

We know as well that

z=a cos K
or
?=a? cos? E;
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therefore, we can write

7 sin f=\/bz (I—M)
a?
=byl—cos? &
=b sin E.

But from Equations Al and A2, we have

b=va*(1—¢?), (A5)
which gives
{ 7 sin f=a+/1—¢’ sin E. (A6)

Similarly, from Figure Al, we see that

r cos f=a cos E—c; (A7)

but since ¢=¢fa, we can write this

| r cos f—a(cos E—e). (AS)

Now, squaring Equations A6 and AS and adding
them together, we have

r?=a’[(1—e?) sin® E-cos? E—2e¢ cos E+¢7]
=a*[1+€*(1 —sin® E)—2¢ cos E]

=a?[1—2¢ cos E+eé? cos*E),
so then
r’=a*(1—e cos E)?
and

r=a(l—e cos F). (A9)

Now, we can rewrite Equation A9 as

1:% (1—e cos E).

When this is multiplied through by e and re-
arranged, we have

e—%“ (1—e cos E)=0, (A10)
which can be written
e—cos E4-cos E——%L(l—e cos £)=0. (A10)

But we know from Equation A9 that

a 1

_— 33
r l—ecos K

so we can write Equation All as
2
e—cos E—i—g cos E—% cos? E_gz_iﬂe”a, cos E=0.
r r ror
From Equation A8 we know that
a
cos f:; (cos E—e),
and so we have
a ae
e—cos E—}-(; cos E_7)

a ae
—e¢ cos E (= cos E—=)=0,
r 7
or

¢—cos E4-cos f—e cos E cos f=0. (Al12)

If we now subtract ¢ from both sides of Equation
A12, multiply through by ¢, and add 1 to both
sides, we geb

1—e cos E+4-¢ cos f—e® cos E cos f=1—¢?,
(1—ecos EY(1+e¢ cosf)=1—e¢
Multiplying through by a/(14e cos f), we have

or

a(l—e?)
1+e cos f

but since the left-hand side of Equation Al3 is
r by Equation A9, we have the ellipse equation

a(1— ecos E)= (A13)

a(l1—e?)

r:1+e cos f' (A14)

The next equation of interest states that the
total area swept out per unit time by the radius

vector of an ellipse i1s 1/h where h=1/ya(1—e?).

dé rdé

In polar coordinates, the area swept out in time
dt is
% r(rdd)
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since the area is that of a triangle. So »*(d8/dt)
is twice the area swept out per unit time. Now,
the area swept out per unit time is the total area
divided by the period of one revolution of the
radius vector. Thus,

s 4 (A15)

But A=rab where a and b are the semimajor and
semiminor axes, respectively. We know from

Equation A5 that b=+a?’(1—e?), so the area
becomes

A=ma*y(1—e?).

We know also that the period P is 2x/n, where n
is the mean motion (average angular velocity)
of the radius vector, and from Kepler's law,
n=a"%%  Therefore, P=2x/a=%% and Equation
A15 becomes

d6 2ma*y(1—e? ——
rzaz__mgr ) g-sn—Jai—e? (Al6)
which we have defined as 1/h. Thus,
1
h=——
va(l—e?)

Proof That ¢ =sin { sin (v—0)

In spherical trigonometry, the law of sines is:
“In any spherical triangle, the sines of the sides

Center of
the earth
Earth’s

equatorial
plane \

AN

Distance VS = v
Distance XN =o¢
Distance NS = (v —o)

Departure Point

are proportional to the sines of the corresponding
opposite angles.” The sine of the geocentric
latitude of a satellite, denoted by ¢, is defined as
the sine of the angle between the earth’s equatorial
plane and the line drawn from the center of the
earth to the satellite.

So, in the spherical triangle N@S (Figure A2),
we have two sides (v—¢) and SQ and two angles
1 and SQN. If we designate the side S as «, the
angle which subtends it, we can write the law of
sines:

sin SQN _sin ¢
sin (v—o) sina

But we know that angle SQN is a right angle,
and we have defined sin « as ¢, so we have

Y=sin i sin (v—o0).

DERIVATION OF EQUATIONS OF MOTION IN
POLAR FORM

Consider the motion of a particle in motion
along a smooth path C, as shown.

P

Osculating plane
of the satellite.

The arc SQ cuts the equatorial plane
perpendicular to it, by definition.

Ficure A2.—Hansen’s coordinate system.




APPENDIX B

THE COMPUTATIONAL PROCEDURE USED IN THE IBM GOP PROGRAM FOR THE GENERATION OF
FINAL SERIES FORMS

The following program was used in the actual  15. Compute the Fourier series product
computation of orbits. The format is the same

e used in the program. =2 ZIOANAI I (AN )

1. Store ay, €, and 1,.

2. Store t'rul.lcating values € anfi s _ 16. Compute y*2.

3. Store limit m to number of iterations.

4, Store . 17. Compute

5. Leave space for a and 1. \ ,

6. Set up storage for 10 Fourier series: A;, A, 9_0=‘L°.< 1 ), (@), (‘.’2).

N, Ms, W, v, hiho, holh, nodz, and A. P\t p p

7. Store ks, kg, ks, _A/23 and BJ2. . 18. Compute the Fourier series (1—3¢*2).

8. Compute 14/2, sin (i0/2), and cos (i,/2).

9. Store as follows: sin (14/2) =)\ 19. Compute the Fourier series (3—5¢*")¢*.

0—A
Oz)\: 20. Compute the Fourier series (35¢**—30)¢**+3.
cos (i0/2)—>As 21. Compute
0->W ke (a0
0—v (103 P
1—ho/h 22. Compute
1-—h/hy v .
0—>nos2 A= () a—apm).
0—A. G \ P
10. Compute and store f=—— 2. 23. Compute
’ L= b (@Y.
' . : . at \p
11. Compute and store the Fourier series 24. Compute
1
* 1_p2
l 9 (1+ 1 60) cos [F+(w)] B:(]:/_i <‘:%0>4 (3_51‘&*2)‘!}*
0
1 .
+§ (1—+/1—e2) cos [F—(w)]—e, cos (w). 25. Compute
ki fa)\°
12. Compute and store the Fourier series Esg (f) .
m*=1 (1+VT—6?) sin [F+()) 26. Compute
ky (a5’
== (—“) 3592 —30)W*+3).
—% (1—+/1—¢?) sin [F—(w)]—e¢, sin (w). al’ \ p [(35¢ W3]
13. Compute and store 27. Compute 2*=A+B+C.

1 s 3 - o0* . . .
m=1—u—i—v .. F(=Dw n=1,2,3,... 28. Compute >F by differentiating the Fourier
14. Compute and store the Fourier series series 9%,
ay 2 (1 ,

e , 29. Compute
P Ji—er \2—|—B cos F4p% cos 2F+ . .. P
%
4B cos nF). n=1,2,3,... P aTQ—:——SA—ALB—SO.
o

52
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As the particle moves from 0 to P, r goes to r-+dr.
If we let i be a unit vector along r, and i+Ai
be a unit vector along r--Ar we can draw the fol-
lowing isosceles triangle, since both sides are
unit vectors:

We know from the definition of plane trigonom-
etry,

. . A8
Ay=2sin 3"
So we can write
Ai 2 sin %
A6 A9
and since
d—.—h ai =1
df a0 A8

we see the magnitude of the vector difd§=1.
Also clearly, from the diagram, as A6—0, Ai
becomes perpendicular to i; so in the limit,

di

Ai . . .
a0 ng(l) E)—a unit vector perpendlculzu to 1,

which we will designate as j, and write

di_;

@ )
Now, the radius vector r=ri, and the velocity vec-
tor is simply

dr (ll
(r) dt (r i)= g}
But since
di . . . di df.
35—], di=jde, and i di Js

we can write the Velocity vector

di_dr. ds .
+ diai o

Then the acceleration vector a is dv/d¢, or

ds d].
dt dt

d2r dr di

drdo
&g at ) +r

ddit e

However, using exactly the same reasoning as
above, we can show that

dj .
a6
or
di__do,
dt— dt—

So, substituting this expression for dj/dt in the a
equation and replacing di/dt with (d6/dt)j, then
rearranging, we have:

dr do drde d0 d0
t2 +dt i g atr dt2> raidi !
Or . . .
a=[r—r(0)2i+[2704r6]j.
However,
i o drdo T
(2r6+r01=2 x0T ae

1d 2(]0]
= 5 ]
r dt dt

SO we can write

a= (r——f‘ﬁz)l—}-— 1d (r"’é)j

where i and j are unit vectors along the radius
and perpendicular to the radius vector, respec-
tively. Therefore the component of the accelera-

tion along r is
7 —ré?,

and the component of the acceleration perpen-
dicular to the radius vector is

().

N =
SRS
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30. Compute

2 () (2 4 () e
+2 (L) (—60pr1400%).
31. Find L
r %i—z=p aa—?)*

where the bar operation means that all #’s
in the argument of the Fourier series

become E’s.
32. Find
20_30°
o
33. Find
2 _o0F
OE  oF

34. Find [=1* and m=m*.
35. Compute M’,

oo s ()9
+|:(%)2+v (1—_1*7>:| 2¢, cos E
_<€§ ) cos 2E+— [e;? cos (F+E))

+|:(2—e02) i +2 (E)) ] cos (F—E)

h 2
-—(E) leo cos (FI—2E))]
2
._[Gf;) +%] €o cos F.
36. Compute N’,
A 1 1 : Y
v o) -] 2eusin =) cosin

-—7 sin 2E+—— [ed® sin (F+E)]

1+ (2—ey?) sin (F—E)

+(hio>2 [eosin (F—2E)].

37. Take the W Fourier series stored, and com-

T

pute SF

38. Compute
S=({1—e cos F) [%%,7—<I+W+%> €q sin F]
39. Compute
h) Y ey
A=+ ) Q4+»)?| 1 — E
<h0 A+v) [ +\/1—e(,2 e cos :|
40. Compute

__a /(3% 4 g 22
S“(l—e02>A[N ( ar)+ M 3E

41, Compute

1
S e y————— S
: \/1‘—@02

42. Find the coefficients a; and a., of the sin F
terms in S, and S, respectively.

43. Solve for y in the equation

a+ay=0; (y——(%
44. Construct
dW
—Sl + ySo
45. Compute
€os 4= — A12— >\22+ )\32—*‘ }\42.
46. Compute
- (7)o
(2\/ 1—ey? ) ho
47. Compute

T2: T(_A;;l_)\.;m).

48. Compute
T3: T()\zl+)\1m)

49. Find the constant terms in the Fourier series
for A, T3, T3, and A, and call them b,, by, bs,
and by, respectively.

50. Compute

_ b by
bl and n—=— b_.“
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51. Compute 57. Compute
—(sin 4 By, 5
e TO—Dam), Mo g+ 4R
. 58. Comput
D o\ +To, pute .
dE~ 0,4 B\, «
)\4=<cos ——i————)—{- As
d—Ev=n>\4+T3) .

’ 59. Store A\; and A, found in steps 57 and 58, along
dy_ _ with A, and A; found in step 52, as the new
dE~ T (=Nl ANem). \’s to be used in the next complete iteration.

52. Compute I\ 60. Compute sz% (constant of integration
W
M= dE not yet included).
d), ~
=] 5 61. Operate to get W.
d)\g 62. Compute
Ng= JE 1 = = \2 = \3
—==1—W+(W)> —(W) T
=) dE

) 63. Compute
where the tilde indicates that the constant

of integration has not yet been added.  dngdz_ (W +V>(1 ¢0 cos E)
. Rl €
H—W

We have the equivalence: dE

N=0Ay, - (1—7) (1—e cos E)? |
\/1—60
)\2:5)\2,
64. Find the coefficients « and 8 of the cos (0) and
A cos (E) terms, respectively, in dnodz
A= ohs. , Tesp Y, dE
.. 65. Compute
53. Compute U= (A4 X))+ (Aa—Ng)" — 20—
AO(]:—Z—__eO—?—)
54. Compute V=0, —A)2+ Az +N)2%
AO _—26—26001'
55. Find H and @, which are the constant parts L W

of U and V, respectively. ~

66. Compute W=W+ (AC,+AC, cos F')—store as

56. Compute —‘;—1 and g by iteration, where new W.

67. Compare a and 8 with ¢, and if |a| >eor |8] >e,

H A return to step 61 and use the W computed in
( > step 66 for the W seen in step 61.

’L

cos z-+sin 5
+ 2 68. Compute ndz== %‘—2 where no constant of
and 5 integration is added.
< ) 69. Compute E, by splitting W series to get X,
2 cos 0 _gin &0 that part of W which contains terms inde-

2 2 pendent of F, that is, select and collect all
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Eourier series terms whose coefficients of F 74. Compute @9:1 1 A—store as new Iﬁ?
in the argument are zero. h k

70. Compute Y, by writing W=E+T cos F

; 75. Compute W by replacing F’s in step 66 by E’s.
+¢ sin F, then letting '=0, and subtracting

X contained in step 69. 76. Compute » by iteration, where
71. Form E-¢,T. v=A—% (A+W)(1+»)—store as new ».
72. Compute A by iteration: 77. Compare
. 2 1Y nr1—Y ol With e
A=—3 (Et+al) s @—A+A—KF .. ). Yri1—Yn :
|otnq1— s With ¢,
h 1 - [72+1—n] with €
73. Compute ]7=1+§ (A+E+e,T)—store as new ntl ’
¢
ko and if any is greater, return to step 13 for

h next iteration.
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